椭圆的简单几何性质作业题附解析(人教版)
加入VIP免费下载

本文件来自资料包: 《椭圆的简单几何性质作业题附解析(人教版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2.1.2 ‎椭圆的简单几何性质 课时目标 1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确标准方程中a,b以及c,e的几何意义,a、b、c、e之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简单问题.‎ ‎1.椭圆的简单几何性质 焦点的 位置 焦点在x轴上 焦点在y轴上 图形 标准 方程 范围 顶点 轴长 短轴长=______,长轴长=______‎ 焦点 焦距 对称性 对称轴是________,对称中心是______‎ 离心率 ‎2.直线与椭圆 直线y=kx+b与椭圆+=1 (a>b>0)的位置关系:‎ 直线与椭圆相切⇔有______组实数解,即Δ______0.直线与椭圆相交⇔有______组实数解,即Δ______0,直线与椭圆相离⇔________实数解,即Δ______0.‎ 一、选择题 ‎1.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是(  )‎ A.5,3, B.10,6, C.5,3, D.10,6, ‎2.焦点在x轴上,长、短半轴长之和为10,焦距为4,则椭圆的方程为(  )‎ A.+=1 B.+=1‎ C.+=1 D.+=1‎ ‎3.若焦点在x轴上的椭圆+=1的离心率为,则m等于(  )‎ A. B. C. D. ‎4.如图所示,A、B、C分别为椭圆+=1 (a>b>0)的顶点与焦点,若∠ABC=90°,‎ 则该椭圆的离心率为(  )‎ A. B.1- C.-1 D. ‎5.若直线mx+ny=4与圆O:x2+y2=4没有交点,则过点P(m,n)的直线与椭圆+=1的交点个数为(  )‎ A.至多一个 B.‎2 ‎‎ C.1 D.0‎ ‎6.已知F1、F2是椭圆的两个焦点。满足·=0的点M总在椭圆内部,则椭圆离心率的取值范围是(  )‎ A.(0,1) B. C. D. 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ 答案 二、填空题 ‎7.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为______________.‎ ‎8.直线x+2y-2=0经过椭圆+=1 (a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______.‎ ‎9.椭圆E:+=1内有一点P(2,1),则经过P并且以P为中点的弦所在直线方程为____________.‎ 三、解答题 ‎10.如图,已知P是椭圆+=1 (a>b>0)上且位于第一象限的一点,F是椭圆的右焦点,O是椭圆中心,B是椭圆的上顶点,H是直线x=- (c是椭圆的半焦距)与x轴的交点,若PF⊥OF,HB∥OP,试求椭圆的离心率e.‎ ‎11.已知椭圆4x2+y2=1及直线y=x+m.‎ ‎(1)当直线和椭圆有公共点时,求实数m的取值范围;‎ ‎(2)求被椭圆截得的最长弦所在的直线方程.‎ 能力提升 ‎12.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(  )‎ A. B. C. D. ‎13.已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F1(-,0),且右顶点为D(2,0).设点A的坐标是.‎ ‎(1)求该椭圆的标准方程;‎ ‎(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程.‎ ‎1.椭圆的范围实质就是椭圆上点的横坐标和纵坐标的取值范围,在求解一些存在性和判断性问题中有着重要的应用.‎ ‎2.椭圆既是一个轴对称图形,又是一个中心对称图形.椭圆的对称性在解决直线与椭圆的位置关系以及一些有关面积的计算问题时,往往能起到化繁为简的作用.‎ ‎3.椭圆的离心率是反映椭圆的扁平程度的一个量,通过解方程或不等式可以求得离心率的值或范围.‎ ‎4.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何中的等量关系.‎ ‎2.1.2 椭圆的简单几何性质 答案 知识梳理 ‎1.‎ 焦点的 位置 焦点在x轴上 焦点在y轴上 图形 标准方程 +=1‎ +=1‎ 范围 ‎-a≤x≤a,-b≤y≤b ‎-b≤x≤b,-a≤y≤a 顶点 ‎(±a,0),(0,±b)‎ ‎(±b,0),(0,±a)‎ 轴长 短轴长=2b,长轴长=‎‎2a 焦点 ‎(±c,0)‎ ‎(0,±c)‎ 焦距 ‎2c‎=2 对称性 对称轴是坐标轴,对称中心是原点 离心率 e=,0c,∴c2‎2c2,‎ ‎∴2

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料