§3.3 二元一次不等式(组)与简单的线性规划问题
3.3.1 二元一次不等式(组)与平面区域
课时目标
1.了解二元一次不等式表示的平面区域.
2.会画出二元一次不等式(组)表示的平面区域.
1.二元一次不等式(组)的概念
含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式.
由几个二元一次不等式组成的不等式组称为二元一次不等式组.
2.二元一次不等式表示的平面区域
在平面直角坐标系中,二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.
不等式Ax+By+C≥0表示的平面区域包括边界,把边界画成实线.
3.二元一次不等式(组)表示平面区域的确定
(1)直线Ax+By+C=0同一侧的所有点的坐标(x,y)代入Ax+By+C所得的符号都相同.
(2)在直线Ax+By+C=0的一侧取某个特殊点(x0,y0),由Ax0+By0+C的符号可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.
一、选择题
1.如图所示,表示阴影部分的二元一次不等式组是( )
A. B.
C. D.
答案 C
解析 可结合图形,根据确定二元一次不等式组表示的平面区域的方法逆着进行.由图知所给区域的三个边界中,有两个是虚的,所以C正确.
2.已知点(-1,2)和(3,-3)在直线3x+y-a=0的两侧,则a的取值范围是( )
A.(-1,6) B.(-6,1)
C.(-∞,-1)∪(6,+∞) D.(-∞,-6)∪(1,+∞)
答案 A
解析 由题意知,(-3+2-a)(9-3-a)