3.3.2 简单的线性规划问题(二)
课时目标
1.准确利用线性规划知识求解目标函数的最值.
2.掌握线性规划实际问题中的两种常见类型.
1.用图解法解线性规划问题的步骤:
(1)分析并将已知数据列出表格;
(2)确定线性约束条件;
(3)确定线性目标函数;
(4)画出可行域;
(5)利用线性目标函数(直线)求出最优解;
根据实际问题的需要,适当调整最优解(如整数解等).
2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.
一、选择题
1.某厂生产甲产品每千克需用原料A和原料B分别为a1、b1千克,生产乙产品每千克需用原料A和原料B分别为a2、b2千克,甲、乙产品每千克可获利润分别为d1、d2元.月初一次性购进本月用的原料A、B各c1、c2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x千克、y千克,月利润总额为z元,那么,用于求使总利润z=d1x+d2y最大的数学模型中,约束条件为( )
A. B.
C. D.
答案 C
解析 比较选项可知C正确.
2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z=ax+y (a>0)取得最大值的最优解有无穷多个,则a的值为( )
A. B. C.4 D.
答案 B
解析 由y=-ax+z知当-a=kAC时,最优解有无穷多个.∵kAC=-,∴a=.
3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )
A.36万元 B.31.2万元 C.30.4万元 D.24万元
答案 B
解析 设投资甲项目x万元,投资乙项目y万元,
可获得利润为z万元,则
z=0.4x+0.6y.
由图象知,
目标函数z=0.4x+0.6y在A点取得最大值.
∴ymax=0.4×24+0.6×36=31.2(万元).
4.某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )
A.甲车间加工原料10箱,乙车间加工原料60箱
B.甲车间加工原料15箱,乙车间加工原料55箱
C.甲车间加工原料18箱,乙车间加工原料50箱
D.甲车间加工原料40箱,乙车间加工原料30箱
答案 B
解析 设甲车间加工原料x箱,乙车间加工原料y箱,由题意可知
甲、乙两车间每天总获利为z=280x+200y.
画出可行域如图所示.
点M(15,55)为直线x+y=70和直线10x+6y=480的交点,由图象知在点M(15,55)处z取得最大值.
5.如图所示,目标函数z=kx-y的可行域为四边形OABC,点B(3,2)是目标函数的最优解,则k的取值范围为( )
A. B.
C. D.
答案 C
解析 y=kx-z.若k>0,则目标函数的最优解是点A(4,0)或点C(0,4),不符合题意.
∴k0时,y=-x+.
斜率k=-