浙江省嘉兴市高新学校等七校2015-2016学年上学期10月联考九年级数学试卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
1. 下列事件中,必然事件是( )
A.掷一枚硬币,正面朝上 B.a是实数,
C.某运动员跳高的最好成绩是20.1米
D.从车间刚生产的产品中任意抽取一件,是次品
2. 二次函数的顶点坐标是( )
A.(-1,-2) B.(-1,2) C.(1,-2) D.(1,2)
3.把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )
A. B.
C. D.
–1
3
3
1
4.下列函数中,图像一定经过原点的是( )
A. B. C. D.
5.如图,抛物线的对称轴是直线,且经过点(3,0),则a-b+c的值为( )
A. 0 B. -1 C. 1 D. 2
6.二次函数图象如图所示,
下面结论正确的是( )
A <0,<0,b >0 B >0,<0,b>0
C >0,>0,->0 D >0,<0,-<0
7.如图,正方形ABCD内接于⊙O,⊙O的直径为分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( )
A. B. C. D.
(第7题图) (第8题图)
8、学生甲与学生乙玩一种转盘游戏,如图是两个完全相同的转盘,每个转盘被
8
分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示,固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若两指针指向扇形的分界线,则都重转一次,在该游戏中乙获胜的概率是( )
A. B. C. D.
9.若二次函数.当≤l时,随的增大而减小,则的取值范围是( )
A.=l B.>l C.≥l D.≤l
10.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一条直线上,开始时点C与点D重合,让△ABC沿直线向右平移,直到点A与点E重合为止。设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数的图象大致是( )
二、认真填一填(本题有10个小题,每小题3分,共30分)
11.从个苹果和个雪梨中,任选个,若选中苹果的概率是,则的值是 .
12.抛物线y=x2-2x-3的顶点坐标是 .
13.将抛物线y=x2的图象向上平移1个单位,则平移后的抛物线的解析式为 .
14.将抛物线y=x2-2x向上平移3个单位,再向右平移4个单位得到的抛物线是_______
15.为了改善小区环境,某小区决定要在一块一边靠墙(墙足够长)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为xm,绿化带的面积为ym2.则y与x之间的函数关系式是 .
图(1) 图(2)
16.如图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是 .
17.一个函数的图象关于
8
轴成轴对称图形时,称该函数为偶函数. 那么在下列四个函数①;②;③;④中,偶函数是 (填出所有偶函数的序号).
18.已知二次函数的图象与x轴有交点,则k的取值范围是 .
19.如图,已知二次函数的图象经过点(-1,0),(1,-2),该图象与x轴的另一个交点为C,则AC长为 .
20.如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、△AnBn﹣1Bn都为等腰直角三角形(点B0是坐标原点),则△A2015B2014B2015的腰长= .
(第19题图)
(1,-2)
-1
A
B
C
(第20题图)
三、全面答一答(本题有6个小题,第21-24题每题6分,第25、26题各8分,共40分)
21.(本小题满分6分)
一个布袋里装有4个只有颜色不同的球,其中3个红球,一个白球。从布袋里摸出一个球,记下颜色后放回,搅匀,再摸出1个球。求下列事件发生的概率:
(1)事件A:摸出1个红球,1个白球。
(2)事件B:摸出两个红球。
22.(本小题满分6分)
已知二次函数当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的关系式.
8
23.(本小题满分6分)
在直角坐标平面中,O为坐标原点,二次函数的图象与y轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO
(1) 求出B点坐标和这个二次函数的解析式;
(2) 求△ABC的面积。
24.(本小题满分6分)如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字。现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).记S=x+y.
(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;
(2)李刚为甲、乙两人设计了一个游戏:当S<6时,甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?
25.(本小题满分8分)抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).
(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标;
(3)画出这条抛物线大致图象;
(4)根据图象回答:
① 当x取什么值时,y>0 ?
② 当x取什么值时,y的值随x的增大而减小?
26.(本小题满分8分)如图,抛物线与x轴交于A(1,0)、B(-4,0)两点.
8
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)设此抛物线与直线在第二象限交于点D,平行于轴的直线与抛物线交于点M,与直线交于点N,连接BM、CM、NC、NB,是否存在的值,使四边形BNCM的面积S最大?若存在,请求出的值,若不存在,请说明理由.
8
参考答案
一、选择题(本大题共10小题,每小题3分,共30分)
题号
1
2
3
4
5
6
7
8
9
10
答案
B
C
A
D
A
B
A
C
C
A
二、填空题(本大题共10小题,每小题3分,共30分)
11. 3 12.(1,-4) 13.y=x2+1 14.y=(x-5)2+2 [或 y=x2-10x+27]
15.16.17. ④
18.且 19. 3 20.2015
三、解答题(本大题共6小题,共40分)
21.(本小题满分6分)
(1)P(A)=; (2)P(B)=。
22.(本小题满分6分)
设这个函数解析式为,
把点(2,3)代入,,解得
∴这个函数解析式是
23.(本小题满分6分)
(1)B(3,0); 二次函数的解析式:y=x2-2x-3
(2)△ABC的面积为6.
24.(本小题满分6分)
8
25.(本小题满分8分)
(1)把(0,3)代入y=-x2+(m-1)x+m,
得m = 3
所以,y=-x2 +2x+3
(2)令y=0,则有:-x2+2x+3=0,
解得x1=3,x2=-1,
∴抛物线与x轴交点坐标为(3,0),(-1,0).
(3)如图
(4)①当-1 < x < 3时,y>0
②当X ≥1 时,y的值随x的增大而减小
8
26.(本小题满分8分)
(1) ∵抛物线y=-x2+bx+c与x轴交于A(1,0)B(-4,0)两点,
将A、B两点坐标代入抛物线方程,得到:
1+b+c=0
16-4b+c=0
解得:b=-3,c=4
所以,该抛物线的解析式为:y=-x2-3x+4
(2) 存在
可得,C(0,4),对称轴为直线x= - 1.5
当QC+QA最小时,△QAC的周长就最小
点A、B关于直线x= - 1.5对称,
所以当点B、Q、C在同一直线上时QC+QA最小
可得:直线BC的解析式为 y=x+4
当x=-1.5时,y=2.5
∴在该抛物线的对称轴上存在点Q(-1.5,2.5),
使得△QAC的周长最小
(3)由题意,M(m,-m2-3m+4),N(m,-m)
∴ 线段MN=-m2-3m+4-(-m)= -m2-2m+4
∵S四边形BNCM=S△BMN+ S△CMN=MN×BO=2MN
∴S= -2m2-4m+8
=-2(m+1)2+10
∴当=-1时(在内),
四边形BNCM的面积S最大。
8