第四章 概率
一.选择题(共10小题)
1.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )
A.对小明有利 B.对小亮有利 C.游戏公平 D.无法确定对谁有利
2.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢.下面说法正确的是( )
A.小强赢的概率最小 B.小文赢的概率最小
C.小亮赢的概率最小 D.三人赢的概率都相等
3.下列说法中正确的是( )
A.“任意画出一个等边三角形,它是轴对称图形”是随机事件
B.“任意画出一个平行四边形,它是中心对称图形”是必然事件
C.“概率为0.0001的事件”是不可能事件
D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次
4.下列事件是必然事件的为( )
A.明天太阳从西方升起
B.掷一枚硬币,正面朝上
C.打开电视机,正在播放“河池新闻”
D.任意﹣个三角形,它的内角和等于180°
5.下列说法中正确的是( )
A.“打开电视,正在播放新闻节目”是必然事件
B.“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上
C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近
D.为了解某种节能灯的使用寿命,选择全面调查
6.下列说法中正确的是( )
A.“打开电视机,正在播放《动物世界》”是必然事件
B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖
C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为
D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查
8
7.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )
A. B. C. D.
8.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )
A. B. C. D.
9.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
A. B. C. D.
10.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( )
A. B. C. D. 1
二.填空题(共10小题)
11.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”)
12.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是 .
13.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为 事件(填“必然”或“不可能”或“随机”).
14.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是 .
15.掷一枚质地均匀的正方体骰子(六个面上分别刻有1到6的点数),向上一面出现的点数大于2且小于5的概率为 .
16.在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有 个.
8
17.有4张看上去无差别的卡片,上面分别写着2,3,4,5.随机抽取1张后,放回并混合在一起,再随机抽取1张,则第二次抽出的数字能够整除第一次抽出的数字的概率是 .
18.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为 .
19.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方 (填“公平”或“不公平”).
20.写一个你喜欢的实数m的值 ,使得事件“对于二次函数y=x2﹣(m﹣1)x+3,当x<﹣3时,y随x的增大而减小”成为随机事件.
三.解答题(共6小题)
21.下列有四种说法:
①了解某一天出入宜宾市的人口流量用普查方式最容易;
②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;
③“打开电视机,正在播放少儿节目”是随机事件;
④如果一件事发生的概率只有十万分之一,那么他仍是可能发生的事件.
其中,正确的说法是 .
22.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:
事件A
必然事件
随机事件
m的值
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.
23.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.
(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;
8
(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.
24. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
25.父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.
(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;
(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.
26.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.
8
(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;
(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.
湖南省澧县张公庙镇中学2015-2016学年湘教版九年级数学下册第四章《概率》单元测试卷
参考答案:
一.选择题(共10小题)
1.C 2.A 3.B 4.D 5.C 6.D 7.B 8.B 9.D 10.B
二.填空题(共10小题)
11. 不公平 .(填“公平”或“不公平”) 12. .
13. 随机 (填“必然”或“不可能”或“随机”). 14. 5 . 15. .
16. 4 . 17. . 18. .
8
19. 不公平 (填“公平”或“不公平”). 20. ﹣3 (答案不唯一) ,
三.解答题(共10小题)
21. ②③④ .
22.解:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;
当摸出2个或3个时,摸到黑球为随机事件,
故答案为:4;2,3.
(2)根据题意得: ,
解得:m=2,
所以m的值为2.
23.解:(1)∵共10个球,有2个黄球,
∴P(黄球)==;
(2)设有x个红球,根据题意得:=,
解得:x=5.
故后来放入袋中的红球有5个.
24.解:(1)画树状图得:
∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,
∴两次传球后,球恰在B手中的概率为:;
(2)画树状图得:
8
∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,
∴三次传球后,球恰在A手中的概率为:=.
25.解:(1)分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,
画树状图得:
∵共有12种等可能的结果,爸爸吃前两个汤圆刚好都是花生馅的有2种情况,
∴爸爸吃前两个汤圆刚好都是花生馅的概率为:=;
(2)会增大.
理由:分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:
∵共有20种等可能的结果,爸爸吃前两个汤圆都是花生的有6种情况,
∴爸爸吃前两个汤圆都是花生的概率为:=>;
∴给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性会增大.
26.解:(1)如图所示:
8
共18种情况,数字之积为6的情况数有3种,P(数字之积为6)==.
(2)由上表可知,该游戏所有可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率=,小王赢的概率=,故小王赢的可能性更大.
8