由莲山课件提供http://www.5ykj.com/ 资源全部免费
2.5 一元二次方程的应用
2.5 第1课时 平均变化率和销售问题
一、选择题
1.2017·安徽一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足( )
A.16(1+2x)=25 B.25(1-2x)=16
C.16(1+x)2=25 D.25(1-x)2=16
2.2017·无锡某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( )
A.20% B.25%
C.50% D.62.5%
3.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1260张照片,如果全班有x名同学,根据题意,列出方程为( )
A.x(x+1)=1260
B.x(x-1)=1260×2
C.x(x-1)=1260
D.2x(x+1)=1260
4.有一台电脑感染了病毒,经过两轮感染后共有121台电脑感染了病毒,则每轮感染中平均一台电脑感染了( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.12台 B.11台 C.10台 D.9台
5.将进货单价为40元/个的商品按50元/个出售时,能卖出500个.已知该商品每涨价1元,其销量就要减少10个,为了获取8000元的利润,应进货( )
A.400个 B.200个
C.400个或200个 D.600个
二、填空题
6.一个两位数,十位上的数字比个位上的数字大7,且十位上的数字与个位上的数字和的平方等于这个两位数,这个两位数是________.
7.一筐苹果分成两堆,其中一堆苹果数是总数的八分之一的平方,另一堆苹果数为12,则这两堆苹果总数为________.
8.水果店销售某种水果,每千克可以获利20元,平均每天可售出100千克,若每千克的售价每降低2元,平均每天的销售量可增加20千克,水果店要确保平均每天获利2240元,且尽快减少水果的库存量,每千克的售价应降低________元.
三、解答题
9.某地地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长率,该单位三天一共能收到多少捐款?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10.2016·永州某种商品的标价为400元/件,经过两次降价后的售价为324元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品的进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元,则第一次降价后至少要售出该种商品多少件?
11.2017·眉山东坡区某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.经调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.
(1)若生产的某批次蛋糕每件利润为14元,则此批次蛋糕属于第几档次产品?
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,则该烘焙店生产的是第几档次的产品?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
12.2017·衢州根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图K-15-1①所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图②所示.
图K-15-1
请根据图中信息,解答下列问题:
(1)求2016年第一产业生产总值(精确到1亿元);
(2)2016年比2015年的国民生产总值增加了百分之几(精确到1%)?
(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年该市国民生产总值的年平均增长率.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
13方案设计题随着人民生活水平的不断提高,某市家庭轿车的拥有量逐年增加.据统计,某小区2015年年底拥有家庭轿车64辆,2017年年底家庭轿车的拥有量达到100辆.
(1)若该小区2015年年底到2018年年底家庭轿车拥有量的年平均增长率都相同,求该小区到2018年年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个,试写出所有可能的方案.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
1.[解析] D 第一次降价后的价格为25×(1-x)元.第二次降价后的价格为25×(1-x)2元.∵两次降价后的价格为16元,∴25(1-x)2=16,故选D.
2.[解析] C 设该店销售额平均每月的增长率为x,则32月份销售额为2(1+x)万元,3月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得x1=0.5=50%,x2=-2.5(不合题意舍去),故该店销售额平均每月的增长率为50%.故选C.
3.[解析] C ∵全班有x名同学,∴每名同学要送出(x-1)张照片.又∵是互送照片,∴总共送了x(x-1)张,∴x(x-1)=1260.故选C.
4.[答案] C
5.[解析] C 设售价为x元/个,由于进货单价为40元/个的商品按50元/个出售时,能卖出500个,已知该商品每涨价1元,其销量就要减少10个,所以现在能够卖出[500-10(x-50)]个,每个利润为(x-40)元,而总利润为8000元,由此即可列出方程[500-10(x-50)]·(x-40)=8000,∴x2-140x+4800=0,∴x=60或x=80,∴500-10(x-50)的值为400或200.故选C.
6.[答案] 81
[解析] 设个位上的数为x,则十位上的数为x+7,依题意,得(x+7+x)2=10(x+7)+x,整理得4x2+17x-21=0,解得x1=1,x2=-(舍去),所以x=1,x+7=8.故这个两位数是81.
7.[答案] 16或48
[解析] 设这两堆苹果总数为x,则(x)2+12=x,整理,得x2-64x+768=0,解得x1=16,x2=48.故答案是16或48.
8.[答案] 6
[解析] 设每千克的售价应降低x元.根据题意,得(20-x)(100+×20)=2240,化简,得x2-10x+24=0,解得x1=4,x2=6.因为要尽快减少水果的库存量,所以每千克的售价应降低6元.故答案是6.
9.解:(1)设捐款增长率为x,根据题意列方程得:10000×(1+x)2=12100,解得x1=0.1=10%,x2=-2.1(不合题意,舍去).
答:捐款增长率为10%.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)第二天收到捐款10000×(1+10%)=11000(元).该单位三天一共能收到捐款10000+11000+12100=33100(元).
答:该单位三天一共能收到33100元捐款.
10.解:(1)设该种商品每次降价的百分率为x%.
依题意得400×(1-x%)2=324,
解得x=10或x=190(舍去).
答:该种商品每次降价的百分率为10%.
(2)设第一次降价后售出该种商品m件,
则第二次降价后售出该种商品(100-m)件,
第一次降价后的单件利润为400×(1-10%)-300=60(元);
第二次降价后的单件利润为324-300=24(元).
依题意得60m+24×(100-m)=36m+2400≥3210,
解得m≥22.5.∵m为正整数,∴m≥23.
答:第一次降价后至少要售出该种商品23件.
11.解:(1)(14-10)÷2+1=3.
答:此批次蛋糕属于第三档次产品.
(2)设烘焙店生产的是第x档次的产品,
根据题意得[10+2(x-1)][76-4(x-1)]=1080,
整理得x2-16x+55=0,
解得x1=5,x2=11(不合题意,舍去).
答:该烘焙店生产的是第五档次的产品.
12.解:(1)1300×7.1%≈92(亿元).
答:2016年第一产业生产总值大约是92亿元.
(2)(1300-1204)÷1204×100%=96÷1204×100%≈8%.
答:2016年比2015年的国民生产总值增加了约8%.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)设2016年至2018年该市国民生产总值的年平均增长率为x,依题意得1300(1+x)2=1573,∴1+x=±1.1,∴x=0.1=10%或x=-2.1(不符合题意,舍去).
答:2016年至2018年该市国民生产总值的年平均增长率为10%.
13、解:(1)设该小区家庭轿车拥有量的年平均增长率为x,
则64(1+x)2=100,解得x1==25%,x2=-(不合题意,舍去),
∴100×(1+25%)=125(辆).
答:该小区到2018年年底家庭轿车将达到125辆.
(2)设该小区可建室内车位a个,露天车位b个,
则由①得b=150-5a,
代入②得20≤a≤.
∵a是正整数,∴a=20或21.
当a=20时,b=50;
当a=21时,b=45.
∴共有两种方案,方案一:建室内车位20个,露天车位50个;方案二:建室内车位21个,露天车位45个.
由莲山课件提供http://www.5ykj.com/ 资源全部免费