由莲山课件提供http://www.5ykj.com/ 资源全部免费
[A 基础达标]
1.给出事件A与B的关系示意图,如图所示,则( )
A.A⊆B B.A⊇B
C.A与B互斥 D.A与B对立
解析:选C.显然事件A与B不能同时发生,但又不一定非要发生一个,有可能都不发生,故A与B不是互为对立事件.
2.口袋内装有一些形状大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( )
A.0.42 B.0.28
C.0.3 D.0.7
解析:选C.摸出红球、白球、黑球是互斥事件,所以摸出黑球的概率是1-0.42-0.28=0.3.
3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,从中取出2粒都是白子的概率是,则从中取出2粒恰好是同一色的概率是( )
A. B.
C. D.1
解析:选C.设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“从中取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.
所以P(C)=P(A)+P(B)=+=.
即从中取出2粒恰好是同一色的概率为.
4.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.
在上述事件中,是对立事件的是( )
A.① B.②④
C.③ D.①③
解析:选C.从1~9中任取两数,有以下三种情况:(
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
1)两个均为奇数;(2)两个均为偶数;(3)一个奇数和一个偶数,故选C.
5.若事件A和B是互斥事件,且P(A)=0.1,则P(B)的取值范围是( )
A.[0,0.9] B.[0.1,0.9]
C.(0,0.9] D.[0,1]
解析:选A.由于事件A和B是互斥事件,则P(A+B)=P(A)+P(B)=0.1+P(B),又0≤P(A+B)≤1,
所以0≤0.1+P(B)≤1,
所以0≤P(B)≤0.9.故选A.
6.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________.
解析:出现一级品的概率为0.98-0.21=0.77;出现三级品的概率为1-0.98=0.02.
答案:0.77,0.02
7.同时抛掷两枚骰子,没有5点且没有6点的概率为,则至少有一个5点或6点的概率是________.
解析:记“没有5点且没有6点”的事件为A,则P(A)=,“至少有一个5点或6点”的事件为B.分析题意可知A与B是对立事件,则P(B)=1-P(A)=1-=.故至少有一个5点或6点的概率为.
答案:
8.某商店月收入(单位:元)在下列范围内的概率如下表所示:
月收入
[1 000,1 500)
[1 500,2 000)
[2 000,2 500)
[2 500,3 000)
概率
0.12
a
b
0.14
已知月收入在[1 000,3 000)内的概率为0.67,则月收入在[1 500,3 000)内的概率为________.
解析:记这个商店月收入在[1 000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000)范围内的事件分别为A,B,C,D,因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,
所以P(B+C+D)=0.67-P(A)=0.55.
答案:0.55
9.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
“厨余垃圾”箱
“可回收物”箱
“其他垃圾”箱
厨余垃圾
400
100
100
可回收物
30
240
30
其他垃圾
20
20
60
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率.
解:(1)设“厨余垃圾”箱里厨余垃圾量为m吨,厨余垃圾总量为n吨,则m=400,n=400+100+100=600.
所以厨余垃圾投放正确的概率约为==.
(2)设“生活垃圾投放错误”为事件A,则事件表示“生活垃圾投放正确”,从而P()==0.7,
所以P(A)=1-P()=1-0.7=0.3.
10.三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A、B、C能答对题目的概率P(A)=,P(B)=,P(C)=,诸葛亮D能答对题目的概率P(D)=,如果将三个臭皮匠A、B、C组成一组与诸葛亮D比赛,答对题目多者为胜方,问哪方胜?
解:如果三个臭皮匠A、B、C能答对的题目彼此互斥(他们能答对的题目不重复),则P(A+B+C)=P(A)+P(B)+P(C)=>P(D)=,故三个臭皮匠方为胜方,即三个臭皮匠能顶上一个诸葛亮;如果三个臭皮匠A、B、C能答对的题目不互斥,则三个臭皮匠未必能顶上一个诸葛亮.
[B 能力提升]
11.据某医疗机构调查,某地区居民血型分布为:O型50%,A型15%,B型30%,AB型5%.现有一血型为A的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )
A.65% B.45%
C.20% D.15%
解析:选A.50%+15%=65%.
12.某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.则当天商店不进货的概率为________.
解析:商店不进货即日销售量少于2件,显然“日销售量为1件”与“日销售量为0件”不可能同时发生,彼此互斥,分别计算两事件发生的频率,将其视作概率,利用概率加法公式可解.
记“当天商品销售量为0件”为事件A,“当天商品销售量为1件”为事件B,“当天商店不进货”为事件C,则P(C)=P(A)+P(B)=+=.
答案:
13.甲射击一次,中靶的概率是p1,乙射击一次,中靶的概率是p2,已知,是方程x2-5x+6=0的根,且p1满足方程x2-x+=0,则甲射击一次, 不中靶的概率为________;乙射击一次,不中靶的概率为________.
解析:由p1满足方程x2-x+=0知,p-p1+=0,解得p1=.因为,是方程x2-5x+6=0的根,所以·=6,解得p2=.因此甲射击一次,不中靶的概率为1-=,乙射击一次,不中靶的概率为1-=.
答案:
14.(选做题)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少.
解:从袋中任取一球,记事件“得到红球”“得到黑球”“得到黄球”“得到绿球”分别为A,B,C,D,
则P(A)=,P(B+C)=P(B)+P(C)=,
P(C+D)=P(C)+P(D)=,
P(B+C+D)=P(B)+P(C)+P(D)
=1-P(A)=1-=.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解
得P(B)=,P(C)=,P(D)=,
即得到黑球、得到黄球、得到绿球的概率分别为、、.
由莲山课件提供http://www.5ykj.com/ 资源全部免费