2016年普通高等学校招生全国考试
数学(文)(北京卷)
本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本市卷和答题卡一并交回。
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合,则
(A) (B) (C) (D)
(2)复数
(A)i(B)1+i(C)(D)
(3)执行如图所示的程序框图,输出的s值为
(A)8
(B)9
(C)27
(D)36
(4)下列函数中,在区间上为减函数的是
(A)(B)(C)(D)
6
(5)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为
(A)1 (B)2 (C)(D)2
(6)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为
(A)(B)(C)(D)
(7)已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x−y的最大值为
(A)−1 (B)3 (C)7 (D)8
(8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.
学生序号
1
2
3
4
5
6
7
8
9
10
立定跳远(单位:米)
1.96
1.92
1.82
1.80
1.78
1.76
1.74
1.72
1.68
1.60
30秒跳绳(单位:次)
63
a
75
60
63
72
70
a−1
b
65
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则
(A)2号学生进入30秒跳绳决赛(B)5号学生进入30秒跳绳决赛
(C)8号学生进入30秒跳绳决赛(D)9号学生进入30秒跳绳决赛
第二部分(非选择题共110分)
二、填空题(共6小题,每小题5分,共30分)
(9)已知向量,则a与b夹角的大小为_________.
(10)函数的最大值为_________.
(11)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.
6
(12) 已知双曲线(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为( ,0),则a=_______;b=_____________.
(13)在△ABC中,,a=c,则=_________.
(14)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店
①第一天售出但第二天未售出的商品有______种;
②这三天售出的商品最少有_______种.
三、解答题(共6题,共80分.解答应写出文字说明,演算步骤或证明过程)
(15)(本小题13分)
已知{an}是等差数列,{bn}是等差数列,且b2=3,b3=9,a1=b1,a14=b4.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn,求数列{cn}的前n项和.
(16)(本小题13分)
已知函数f(x)=2sin ωxcosωx+cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
(17)(本小题13分)
某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
6
(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.
(18)(本小题14分)
如图,在四棱锥P-ABCD中,PC⊥平面ABCD,
(I)求证:;
(II)求证:;
(III)设点E为AB的中点,在棱PB上是否存在点F,使得?说明理由.
6
(19)(本小题14分)
已知椭圆C:过点A(2,0),B(0,1)两点.
(I)求椭圆C的方程及离心率;
(II)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
(20)(本小题13分)
设函数
(I)求曲线在点处的切线方程;
(II)设,若函数有三个不同零点,求c的取值范围;
(III)求证:是有三个不同零点的必要而不充分条件.
6
参考答案
6