绝密★启封并使用完毕前
试题类型:
2016年普通高等学校招生全国统一考试
理科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4. 考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合S= ,则ST=
(A) [2,3] (B)(- ,2] [3,+)
(C) [3,+) (D)(0,2] [3,+)
(2)若z=1+2i,则
(A)1 (B) -1 (C) i (D)-i
(3)已知向量 , 则ABC=
(A)300 (B) 450 (C) 600 (D)1200
(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是
4
(A) 各月的平均最低气温都在00C以上
(B) 七月的平均温差比一月的平均温差大
(C) 三月和十一月的平均最高气温基本相同
(D) 平均气温高于200C的月份有5个
(5)若 ,则
(A) (B) (C) 1 (D)
第II卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
(13)若x,y满足约束条件 则z=x+y的最大值为_____________.
(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
(15)已知f(x)为偶函数,当时,,则曲线y=f(x),在带你(1,-3)处的切线方程是_______________。
(16)已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若,则__________________.
4
三.解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
已知数列的前n项和,,其中0
(I)证明是等比数列,并求其通项公式
(II)若 ,求
(18)(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明
(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。
(19)(本小题满分12分)
如图,四棱锥P-ABCD中,PA⊥地面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(I)证明MN∥平面PAB;
(II)求直线AN与平面PMN所成角的正弦值..
4
(20)(本小题满分12分)
已知抛物线的焦点为F,平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点.
(I)若F在线段AB上,R是PQ的中点,证明AR∥FQ;
(II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程。
(21)(本小题满分12分)
设函数f(x)=acos2x+(a-1)(cosx+1),其中a>0,记的最大值为A。
(Ⅰ)求f'(x);
(Ⅱ)求A;
(Ⅲ)证明≤2A。
请考生在[22]、[23]、[24]题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。
22.(本小题满分10分)选修4-1:几何证明选讲
如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.
(I)若∠PFB=2∠PCD,求∠PCD的大小;
(II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OG⊥CD.
23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线的参数方程为,以坐标原点为极点,以x轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为 .
(I)写出的普通方程和的直角坐标方程;
(II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.
24.(本小题满分10分)选修4-5:不等式选讲
已知函数
(I)当a=2时,求不等式的解集;
(II)设函数当时,f(x)+g(x)≥3,求a的取值范围.
4