2016年高考数学真题带解析(理科全国1卷)
加入VIP免费下载

本文件来自资料包: 《2016年高考数学真题带解析(理科全国1卷)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
www.ks5u.com 说明:非官方版正式答案,答案和解析有可能存在少量错误,仅供参考使用。‎ ‎2016年新课标I高考数学(理科)答案与解析 ‎1. ,.‎ 故.‎ 故选D.‎ ‎2. 由可知:,故,解得:.‎ 所以,.‎ 故选B.‎ ‎3. 由等差数列性质可知:,故,‎ 而,因此公差 ‎∴.‎ 故选C.‎ ‎4. 如图所示,画出时间轴:‎ 小明到达的时间会随机的落在图中线段中,而当他的到达时间落在线段或时,才能保证他等车的时间不超过10分钟 根据几何概型,所求概率.‎ 故选B.‎ ‎5. 表示双曲线,则 ‎∴‎ 由双曲线性质知:,其中是半焦距 ‎∴焦距,解得 ‎∴‎ 故选A.‎ ‎6. 原立体图如图所示:‎ 是一个球被切掉左上角的后的三视图 表面积是的球面面积和三个扇形面积之和 故选A.‎ ‎7. ,排除A ‎,排除B 时,‎ ‎,当时,‎ 因此在单调递减,排除C 故选D.‎ ‎8. 对A: 由于,∴函数在上单调递增,因此,A错误 对B: 由于,∴函数在上单调递减,‎ ‎∴,B错误 对C: 要比较和,只需比较和,只需比较和,只需和 构造函数,则,在上单调递增,因此 又由得,∴,C正确 对D: 要比较和,只需比较和 而函数在上单调递增,故 又由得,∴,D错误 故选C.‎ ‎9. 如下表:‎ 循环节运行次数 判断 是否输出 运行前 ‎0‎ ‎1‎ ‎/‎ ‎/‎ ‎1‎ 第一次 否 否 第二次 否 否 第三次 是 是 输出,,满足 故选C.‎ ‎10. 以开口向右的抛物线为例来解答,其他开口同理 设抛物线为,设圆的方程为,题目条件翻译如图:‎ F 设,,‎ 点在抛物线上,∴……①‎ 点在圆上,∴……②‎ 点在圆上,∴……③‎ 联立①②③解得:,焦点到准线的距离为.‎ 故选B.‎ ‎11. 如图所示:‎ ‎∵,∴若设平面平面,则 又∵平面∥平面,结合平面平面 ‎∴,故 同理可得:‎ 故、的所成角的大小与、所成角的大小相等,即的大小.‎ 而(均为面对交线),因此,即.‎ 故选A.‎ ‎12. 由题意知:‎ 则,其中 在单调,‎ 接下来用排除法 若,此时,在递增,在递减,不满足在单调 若,此时,满足在单调递减 故选B.‎ ‎13. 由已知得:‎ ‎∴,解得.‎ ‎14. 设展开式的第项为,‎ ‎∴.‎ 当时,,即 故答案为10.‎ ‎15.由于是等比数列,设,其中是首项,是公比.‎ ‎∴,解得:.‎ 故,∴‎ 当或时,取到最小值,此时取到最大值.‎ 所以的最大值为64.‎ ‎16. 设生产A产品件,B产品件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为 目标函数 作出可行域为图中的四边形,包括边界,顶点为 在处取得最大值,‎ ‎17.⑴ ‎ 由正弦定理得:‎ ‎∵,‎ ‎∴‎ ‎∴,‎ ‎∵‎ ‎∴‎ ⑵ 由余弦定理得:‎ ‎∴‎ ‎∴‎ ‎∴周长为 ‎18.⑴ ∵为正方形 ‎∴‎ ‎∵‎ ‎∴‎ ‎∵‎ ‎∴面 面 ‎∴平面平面 ⑵ 由⑴知 ‎∵‎ 平面 平面 ‎∴平面 平面 ‎∵面面 ‎∴‎ ‎∴‎ ‎∴四边形为等腰梯形 以为原点,如图建立坐标系,设 ‎ ‎ ‎,,‎ 设面法向量为.‎ ‎,即 设面法向量为 ‎.即 设二面角的大小为.‎ 二面角的余弦值为 ‎19.⑴ 每台机器更换的易损零件数为8,9,10,11‎ 记事件为第一台机器3年内换掉个零件 记事件为第二台机器3年内换掉个零件 由题知,‎ 设2台机器共需更换的易损零件数的随机变量为,则的可能的取值为16,17,18,19,20,21,22‎ ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ ‎21‎ ‎22‎ ⑵ 要令,,‎ 则的最小值为19‎ ⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用 当时,费用的期望为 当时,费用的期望为 所以应选用 ‎20.⑴ 圆A整理为,A坐标,如图,‎ ‎,则,由,‎ 则 所以E的轨迹为一个椭圆,方程为,();‎ ‎⑵ ;设,‎ 因为,设,联立 得;‎ 则;‎ 圆心到距离,‎ 所以,‎ ‎21.⑴ 由已知得:‎ ‎① 若,那么,只有唯一的零点,不合题意;‎ ‎② 若,那么,‎ 所以当时,,单调递增 当时,,单调递减 即:‎ ‎↓‎ 极小值 ‎↑‎ 故在上至多一个零点,在上至多一个零点 由于,,则,‎ 根据零点存在性定理,在上有且仅有一个零点.‎ 而当时,,,‎ 故 则的两根,, ,因为,故当或时,‎ 因此,当且时,‎ 又,根据零点存在性定理,在有且只有一个零点.‎ 此时,在上有且只有两个零点,满足题意.‎ ‎③ 若,则,‎ 当时,,,‎ 即,单调递增;‎ 当时,,,即,单调递减;‎ 当时,,,即,单调递增.‎ 即:‎ ‎+‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ ‎↑‎ 极大值 ‎↓‎ 极小值 ‎↑‎ 而极大值 故当时,在处取到最大值,那么恒成立,即无解 而当时,单调递增,至多一个零点 此时在上至多一个零点,不合题意.‎ ‎④ 若,那么 当时,,,即,‎ 单调递增 当时,,,即,‎ 单调递增 又在处有意义,故在上单调递增,此时至多一个零点,不合题意.‎ ‎⑤ 若,则 当时,,,即,‎ 单调递增 当时,,,即,‎ 单调递减 当时,,,即,‎ 单调递增 即:‎ ‎+‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ ‎↑‎ 极大值 ‎↓‎ 极小值 ‎↑‎ 故当时,在处取到最大值,那么恒成立,即无解 当时,单调递增,至多一个零点 此时在上至多一个零点,不合题意.‎ 综上所述,当且仅当时符合题意,即的取值范围为.‎ ⑵ 由已知得:,不难发现,,‎ 故可整理得:‎ 设,则 那么,当时,,单调递减;当时,,单调递增.‎ 设,构造代数式:‎ 设,‎ 则,故单调递增,有.‎ 因此,对于任意的,.‎ 由可知、不可能在的同一个单调区间上,不妨设,则必有 令,则有 而,,在上单调递增,因此:‎ 整理得:.‎ ‎22.⑴ 设圆的半径为,作于 ‎∵‎ ‎∴‎ ‎∴与相切 ‎⑵ 方法一:‎ 假设与不平行 与交于 ‎∵四点共圆 ‎∴‎ ‎∵‎ ‎∴‎ 由①②可知矛盾 ‎∴‎ 方法二:‎ 因为,因为所以为的中垂线上,同理所以的中垂线,所以.‎ ‎23.⑴ (均为参数)‎ ‎∴ ①‎ ‎∴为以为圆心,为半径的圆.方程为 ‎∵‎ ‎∴ 即为的极坐标方程 ⑵ ‎ 两边同乘得 即 ②‎ ‎:化为普通方程为 由题意:和的公共方程所在直线即为 ‎①—②得:,即为 ‎∴‎ ‎∴‎ ‎24.⑴ 如图所示:‎ ‎⑵ ‎ 当,,解得或 当,,解得或 或 当,,解得或 或 综上,或或 ‎,解集为

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料