由莲山课件提供http://www.5ykj.com/ 资源全部免费
第14章 全等三角形 单元测试
一、选择题
1.如图,两个三角形全等,则∠a度数是( )
A. 72° B. 60° C. 58° D. 50°
【答案】D
2.已知:△ABC≌△DEF,AB=DE,∠A=70°,∠E=30°,则∠F的度数为 ( )
A. 80° B. 70° C. 30° D. 100°
【答案】A
3.已知:如图△ABC≌△DCB,其中点A与点D,点B与点C分别是对应顶点,如果AB=2,AC=3,CB=4,那么DC的长为( )
A. 2 B. 3 C. 4 D. 不确定
【答案】A
4. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )
A. ∠B=∠C B. AD=AE C. BD=CE D. BE=CD
【答案】D
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是 ( )
A. ∠DAE=∠CBE B. ΔDEA不全等于ΔCEB C. CE=DE D. ΔEAB是等腰三角形
【答案】B
6.如图,在△ABC和△DBE中,BC=BE,还需再添加两个条件才能使△ABC≌△DBE,则不能添加的一组条件是( )
A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE,∠C=∠E D. ∠ C=∠ E,∠ A=∠ D
【答案】A
7.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )
A. PD=DQ B. DE=AC C. AE=CQ D. PQ⊥AB
【答案】D
8.如图甲、乙、丙三个三角形中能确定和右图△ABC完全重合的是( )
A. 甲和丙 B. 丙和乙 C. 只有甲 D. 只有丙
【答案】A
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
9.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于( )
A. 65° B. 95° C. 45° D. 100°
【答案】B
10.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为( )
A. 20° B. 30° C. 35° D. 40°
【答案】B
11.下列是利用了三角形的稳定性的有( )个
①自行车的三角形车架;
②长方形门框的斜拉条;
③照相机的三脚架;
④塔吊上部的三角形结构.
A. 1 B. 2 C. 3 D. 4
【答案】D
12.在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,根据图中标示的各点位置,与△ABC全等的是( )
A. △ACF B. △ACE C. △ABD D. △CEF
【答案】C
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
二、填空题
13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________ 性.
【答案】稳定
14.如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样做的数学道理是________ .
【答案】三角形的稳定性
15.如图,AB∥CD,AC⊥BC,垂足为C.若∠A=40°,则∠BCD=________ 度.
【答案】50
16.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是: ________
【答案】AC=DF
17. 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE等于________.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】2
18.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=________ 度
【答案】90
19.如图,在Rt△ABC和Rt△DCB中,AB=DC , ∠A=∠D=90°,AC与BD交于点O , 则有△________≌△________,其判定依据是________,还有△________≌△________,其判定依据是________.
【答案】ABC;DCB;HL;AOB;DOC;AAS
三、解答题
20.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.
【答案】证明:∵∠A=∠D=90°,AC=BD,BC=BC,
∴Rt△BAC≌Rt△CDB(HL)
∴∠ACB=∠DBC.
∴∠OCB=∠OBC.
∴OB=OC(等角对等边).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.如图,点A,C,D,B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.
【答案】证明:∵AC=BD,
∴AC+CD=BD+CD,
∴AD=BC,
在△AED和△BFC中,
,
∴△AED≌△BFC(ASA),
∴DE=CF
22.已知:如图,AB=AE,∠B=∠E,BC=ED,AF⊥CD,求证:CF=DF.
【答案】证明:连接AC,AD,
在△ABC与△AED中,
∴△ABC≌△AED,
∴AC=AD,
∵AF⊥CD,
∴CF=DF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外取一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接ME.试判断ME与BC是否垂直,并说明理由.
【答案】(1)证明:∵∠BAC=90°,AF⊥AE,
∴∠1+∠EAC=90°,∠2+∠EAC=90°
∴∠1=∠2,
又∵AB=AC,
∴∠B=∠ACB=45°,
∵FC⊥BC,
∴∠FCA=90°﹣∠ACB=90°﹣45°=45°,
∴∠B=∠FCA,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴BE=CF;
(2)解:如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,
∴HE=BH,∠BEH=45°,
∵AE平分∠BAD,AD⊥BC,
∴DE=HE,
∴DE=BH=HE,
∵BM=2DE,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴HE=HM,
∴△HEM是等腰直角三角形,
∴∠MEH=45°,
∴∠BEM=45°+45°=90°,
∴ME⊥BC.
24.阅读
(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是________;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
【答案】(1)2<AD<8
(2)解:证明:延长FD至点M,使DM=DF,连接BM,EM,如图②所示:
同(1)得:△BMD≌△CFD(SAS),
∴BM=CF,
∵DE⊥DF,DM=DF,
∴EM=EF,
在△BME中,由三角形的三边关系得:BE+BM>EM,
∴BE+CF>EF
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)解:BE+DF=EF;理由如下:
延长AB至点N,使BN=DF,连接CN,如图3所示:
∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,
∴∠NBC=∠D,
在△NBC和△FDC中, ,
∴△NBC≌△FDC(SAS),
∴CN=CF,∠NCB=∠FCD,
∵∠BCD=140°,∠ECF=70°,
∴∠BCE+∠FCD=70°,
∴∠ECN=70°=∠ECF,
在△NCE和△FCE中, ,
∴△NCE≌△FCE(SAS),
∴EN=EF,
∵BE+BN=EN,
∴BE+DF=EF
由莲山课件提供http://www.5ykj.com/ 资源全部免费