25.2 用列举法求概率同步练习
一、选择题
1. 布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( )
A. 16 B. 29 C. 13 D. 23
2. 同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )
A. 38 B. 58 C. 23 D. 12
3. 如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字−1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. 18 B. 16 C. 14 D. 12
4. 小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )
A. 16 B. 13 C. 12 D. 23
5. 三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为( )
A. )19 B. )16 C. )14 D. )12
6. 从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名学生担任升旗手,则抽取的两名学生刚好一个班的概率为( )
A. 15 B. 25 C. 35 D. 45
7. 从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( )
A. 14 B. 12 C. 34 D. 1
第5页,共6页
1. 小王家新锁的密码是6位数,他记得前两位数是23,后两位数是32,中间两位数忘了,那么他一次按对的概率是( )
A. 120 B. 150 C. 190 D. 1100
2. 某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( )
A. 14 B. 13 C. 12 D. 34
3. 若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字−2,−1,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点P(x,y),那么点P落在直线y=−x+1上的概率是( )
A. 12 B. 13 C. 14 D. 16
二、填空题
4. 有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是______ .
5. 箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是______ .
6. 如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是______ .
7. 从−1,−2,12,23四个数中,任取一个数记为k,再从余下的三个数中,任取一个数记为b.则一次函数y=kx+b的图象不经过第四象限的概率是______ .
8. 从−1,0,2,3这四个数中,任取两个数作为a,b,分别代入一元二次方程ax2+bx+2=0中,那么所有可能的一元二次方程中有实数解的一元二次方程的概率为______ .
三、计算题
第5页,共6页
1. 一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.
(1)写出按上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.
2. 近年来,手机微信红包迅速流行起来.去年春节,小米的爷爷也尝试用微信发红包,他分别将10元、30元、60元的三个红包发到只有爷爷、爸爸、妈妈和小米的微信群里,他们每人只能抢一个红包,且抢到任何一个红包的机会均等(爷爷只发不抢,红包里钱的多少与抢红包的先后顺序无关).
(1)求小米抢到60元红包的概率;
(2)如果小米的奶奶也加入“抢红包”的微信群,他们四个人中将有一个人抢不到红包,那么这种情况下,求小米和妈妈两个人抢到红包的钱数之和不少于70元的概率.
3. 若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)
第5页,共6页
写出所有个位数字是5的“两位递增数”;
(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.
第5页,共6页
【答案】
1. C 2. D 3. C 4. D 5. D 6. B 7. B
8. D 9. A 10. B
11. 25
12. 23
13. 17
14. 16
15. 14
16. 解:(1)画树状图:
共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;
(2)算术平方根大于4且小于7的结果数为6,
所以算术平方根大于4且小于7的概率=616=38.
17. 解:(1)小米抢到60元红包的概率=13;
(2)画树状图为:
共有24种等可能的结果数,其中小米和妈妈两个人抢到红包的钱数之和不少于70元的结果数为8,
所以小米和妈妈两个人抢到红包的钱数之和不少于70元的概率=824=13.
第5页,共6页
18. 解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;
(2)画树状图为:
共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,
所以个位数字与十位数字之积能被10整除的概率=315=15.
第5页,共6页