2016年山东省淄博市中考数学试卷
一、选择题(共12小题,每小题4分,满分48分)
1.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体与长达30000000个核苷酸,30000000用科学记数法表示为( )
A.3×107 B.30×104 C.0.3×107 D.0.3×108
【答案】A.
【解析】
试题分析:科学计数法是指:a×,且,n为原数的整数位数减一.30000000用科学计数法表示为30000000=3×107.故答案选A.
考点:科学计数法.
2.计算|﹣8|﹣(﹣)0的值是( )
A.﹣7 B.7 C.7 D.9
【答案】B.
考点:绝对值;零指数幂.
3.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )
A.2条 B.3条 C.4条 D.5条
【答案】D.
【解析】
试题分析:如图所示,根据点到直线的距离就是这个点到这条直线垂线段的长度,可知线段AB是点B到AC的距离,线段CA是点C到AB的距离,线段AD是点A到BC的距离,线段BD是点B到AD的距离,线段CD是点C到AD的距离,所以图中能表示点到直线距离的线段共有5条.故答案选D.
18
考点:点到直线的距离.
4.关于x的不等式组,其解集在数轴上表示正确的是( )
A. B.
C. D.
【答案】D.
【解析】
试题分析:由①得,x>﹣1,由②得,x≤2,故不等式组的解集为:﹣1<x≤2.
在数轴上表示为:.故答案选D.
考点:解一元一次不等式组.
5.下列特征量不能反映一组数据集中趋势的是( )
A.众数 B.中位数 C.方差 D.平均数
【答案】C.
考点:统计量的选择.
6.张老师买了一辆启辰R50X汽车,为了掌握车的油耗情况,在连续两次加油时做了如下工作:
(1)把油箱加满油;
(2)记录了两次加油时的累计里程(注:“累计里程”指汽车从出厂开始累计行驶的路程),以下是张老师连续两次加油时的记录:
加油时间
加油量(升)
加油时的累计里程(千米)
2016年4月28日
18
6200
2016年5月16日
30
6600
则在这段时间内,该车每100千米平均耗油量为( )
A.3升 B.5升 C.7.5升 D.9升
【答案】C.
【解析】
18
试题分析:根据图表得出行驶的总路程为400千米,总的耗油量为12升,所以平均油耗.为400÷30=7.5升.
故答案选C.
考点:图表信息题;平均数.
7.如图,△ABC的面积为16,点D是BC边上一点,且BD=BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是( )
A.3 B.4 C.5 D.6
【答案】B.
考点:三角形的面积公式;平行四边形的性质.
8.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为( )
A. B.2 C. D.10﹣5
【答案】B.
【解析】
试题分析:如图,延长BG交CH于点E,在△ABG和△CDH中,AB=CD=10,AG=CH=8,BG=DH=6,
18
∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,
同理可得HE=2,在RT△GHE中,GH=2,故答案选B.
考点:正方形的性质;全等三角形的判定及性质;勾股定理.
9.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是( )
A. B.1 C. D.2
【答案】D.
考点:相似三角形的判定及性质;勾股定理.
18
10.小明用计算器计算(a+b)c的值,其按键顺序和计算器显示结果如表:
这时他才明白计算器是先做乘法再做加法的,于是他依次按键:
从而得到了正确结果,已知a是b的3倍,则正确的结果是( )
A.24 B.39 C.48 D.96
【答案】C.
考点:计算器的基础知识.
11.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为( )
A. B. C. D.
【答案】A.
【解析】
试题分析:如图,作BF⊥l3,AE⊥l3,
18
∵∠ACB=90°,
∴∠BCF+∠ACE=90°,
∵∠BCF+∠CFB=90°,
∴∠ACE=∠CBF,
在△ACE和△CBF中,
,
∴△ACE≌△CBF,
∴CE=BF=3,CF=AE=4,
∵l1与l2的距离为1,l2与l3的距离为3,
∴AG=1,BG=EF=CF+CE=7
∴AB==5,
∵l2∥l3,
∴=
∴DG=CE=,
∴BD=BG﹣DG=7﹣=,
∴=.
故答案选A.
考点:平行线分线段成比例.
12.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
①S△ODB=S△OCA;
②四边形OAMB的面积不变;
③当点A是MC的中点时,则点B是MD的中点.
其中正确结论的个数是( )
18
A.0 B.1 C.2 D.3
【答案】D.
考点:反比例系数的几何意义.
二、填空题(共5小题,每小题5分,满分25分)
13.计算的结果是 .
【答案】1﹣2a.
【解析】
试题分析:将多项式1﹣4a2分解为(1﹣2a)(1+2a),然后再约分即可,原式==1﹣2a.
考点:分式的化简.
14.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中涂出一种该几何体的主视图,且使该主视图是轴对称图形.
18
【答案】如图:
考点:几何体的三视图;轴对称图形.
15. 若x=3﹣,则代数式x2﹣6x+9的值为 .
【答案】2.
【解析】
18
试题分析:根据完全平方公式可得x2﹣6x+9=(x﹣3)2,当x=3﹣时,原式=(3﹣﹣3)2=2.
考点:求代数式的值.
16.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是 .
【答案】.
考点:分式方程的应用.
17.如图,⊙O的半径为2,圆心O到直线l的距离为4,有一内角为60°的菱形,当菱形的一边在直线l上,另有两边所在的直线恰好与⊙O相切,此时菱形的边长为 .
【答案】4.
【解析】
试题分析:过点O作直线l的垂线,交AD于E,交BC于F,作AG直线l于G,根据题意求出EF的长,得到AG的长,根据正弦的概念计算即可.过点O作直线l的垂线,交AD于E,交BC于F,作AG直线l于G,由题意得,EF=2+4=6,根据矩形的性质可得,AG=EF=6,在Rt△ABG中,AB=.
考点:切线的性质;菱形的性质.
三、解答题(共7小题,满分52分)
18
18.(5分)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.
【答案】OA∥BC,OB∥AC,理由详见解析.
考点:平行线的判定.
19. (5分)解方程:x2+4x﹣1=0.
【答案】x1=﹣2+,x2=﹣2﹣.
【解析】
试题分析:移项可得x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.
试题解析:
x2+4x﹣1=0
x2+4x=1
x2+4x+4=1+4
18
(x+2)2=5
x=﹣2±
x1=﹣2+,x2=﹣2﹣.
考点:解一元二次方程.
20.(8分)下面是淄博市2016年4月份的天气情况统计表:
日期
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
天气
多云
阴
多云
晴
多云
阴
晴
晴
晴
多云
多云
多云
晴
晴
雨
日期
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
天气
雨
多云
多云
多云
多云
晴
多云
多云
晴
多云
多云
多云
晴
晴
晴
(1)请完成下面的汇总表:
天气
晴
多云
阴
雨
天数
(2)根据汇总表绘制条形图;
(3)在该月中任取一天,计算该天多云的概率.
【答案】(1)11、15、2、2;(2)图见解析;(3).
试题解析:
(1)由4月份的天气情况统计表可知,晴天共11天,多云15天,阴2天,雨2天;完成汇总表如下:
天气
晴
多云
阴
雨
天数
11
15
2
2
(2)条形图如图:
18
(3)在该月中任取一天,共有30种等可能结果,其中多云的结果由15种,
∴该天多云的概率为=.
考点:条形统计图;概率公式.
21.(8分)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.
(1)求这条抛物线对应的函数解析式;
(2)求直线AB对应的函数解析式.
【答案】(1)y=x2+2x+1;(2)y=2x+2.
试题解析:
(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,
∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,
18
∴抛物线解析式为y=x2+2x+1;
考点:待定系数法求函数解析式.
22.(8分)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.
(1)求证:AE=AF;
(2)求证:BE=(AB+AC).
【答案】(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)根据角平分线的性质及平行线的性质易∠AEF=∠AFE,即可得AE=AF;(2)作CG∥EM,交BA的延长线于G,已知AC=AG,根据三角形中位线定理的推论证明BE=EG,再利用三角形的中位线定理即可证得结论.
试题解析:
(1)∵DA平分∠BAC,
∴∠BAD=∠CAD,
∵AD∥EM,
∴∠BAD=∠AEF,∠CAD=∠AFE,
18
∴∠AEF=∠AFE,
∴AE=AF.
(2)作CG∥EM,交BA的延长线于G.
∵EF∥CG,
∴∠G=∠AEF,∠ACG=∠AFE,
∵∠AEF=∠AFE,
∴∠G=∠ACG,
∴AG=AC,
∵BM=CM.EM∥CG,
∴BE=EG,
∴BE=BG=(BA+AG)=(AB+AC).
考点:三角形中位线定理;等腰三角形的判定与性质.
23.(9分)已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为.
(1)求a的值;
(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;
(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.
【答案】(1)y=x2;(2)M1(,),Q1(,),M2(﹣,),Q2(﹣,);(3)详见解析.
18
【解析】
(2)∵M在抛物线上,设M(t,t2),Q(m,),
∵O、Q、M在同一直线上,
∴KOM=KOQ,
∴=,
∴m=,
∵QO=QM,
∴m2+()2=(m﹣t)2=(﹣t2)2,
整理得到:﹣t2+t4+t2﹣2mt=0,
∴4t4+3t2﹣1=0,
∴(t2+1)(4t2﹣1)=0,
∴t1=,t2=﹣,
当t1=时,m1=,
当t2=﹣时,m2=﹣.
18
∴M1(,),Q1(,),M2(﹣,),Q2(﹣,).
(3)设M(n,n2)(n>0),
∴N(n,0),F(0,),
∴MF===n2+,MN+OF=n2+,
∴MF=MN+OF.
考点:二次函数综合题.
24.(9分)如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.
(1)求证:=;
(2)求证:AF⊥FM;
(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.
【答案】(1)详见解析;(2)详见解析;(3)∠BAM=22.5时,∠FMN=∠BAM,理由详见解析.
【解析】
试题解析:
(1)证明:∵四边形ABCD是正方形,
∴∠ABD=∠CBD=45°,∠ABC=90°,
∵∠MAN=45°,
18
∴∠MAF=∠MBE,
∴A、B、M、F四点共圆,
∴∠ABM+∠AFM=180°,
∴∠AFM=90°,
∴∠FAM=∠FMA=45°,
∴AM=AF,
∴=.
(2)由(1)可知∠AFM=90°,
∴AF⊥FM.
18
考点:四边形综合题.
18