空间几何体的表面积与体积
【考点梳理】
1.多面体的表(侧)面积
因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开图
侧面积公式
S圆柱侧=2πrl
S圆锥侧=πrl
S圆台侧=π(r1+r2)l
3.柱、锥、台和球的表面积和体积
名称
几何体
表面积
体积
柱体(棱柱和圆柱)
S表面积=S侧+2S底
V=Sh
锥体(棱锥和圆锥)
S表面积=S侧+S底
V=Sh
台体(棱台和圆台)
S表面积=S侧+S上+S下
V=(S上+S下+)h
球
S=4πR2
V=πR3
【考点突破】
考点一、空间几何体的表面积
【例1】(1)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )
A.18+36 B.54+18 C.90 D.81
(2)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )
A.1 B.2 C.4 D.8
[答案] (1) B (2) B
[解析] (1)由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×3)×2=54+18.故选B.
(2) 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.
【类题通法】
1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2)简单组合体:应搞清各构成部分,并注意重合部分的处理.
2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.
【对点训练】
1.某几何体的三视图如图所示,则该几何体的表面积等于( )
A.8+2 B.11+2 C.14+2 D.15
[答案] B
[解析] 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为=,所以底面周长为4+,侧面积为4+2+2+2=8+2,两底面的面积和为2××1×(1+2)=3.所以该几何体的表面积为8+2+3=11+2.
2.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
A.20π B.24π C.28π D.32π
[答案] C
[解析] 几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r,周长为c,圆锥母线长为l,圆柱高为h.由三视图知r=2,c=2πr=4π,h=4.所以l==4.故该几何体的表面积S表=πr2+ch+cl=4π+16π+8π=28π.
考点二、空间几何体的体积
【例2】(1)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.
(2)如图所示,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A-B1DC1的体积为( )
A.3 B. C.1 D.
(3)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
A. B. C. D.2π
[答案] (1) 2 (2) C (3) C
[解析] (1)由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积V=Sh=×2×1×3=2.
(2)在正△ABC中,D为BC中点,则有AD=AB=,又∵平面BB1C1C⊥平面ABC,AD⊥BC,AD⊂平面ABC,由面面垂直的性质定理可得AD⊥平面BB1C1C,即AD为三棱锥A-B1DC1的底面B1DC1上的高,∴VA-B1DC1=S△B1DC1·AD=××2××=1.
(3)过点C作CE垂直AD所在直线于点E,梯形ABCD绕AD
所在直线旋转一周而形成的旋转体是由以线段AB的长为底面圆半径,线段BC为母线的圆柱挖去以线段CE的长为底面圆半径,ED为高的圆锥,如图所示.
【类题通法】
1.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解.
2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.
3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
【对点训练】
1.已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.
[答案]
[解析] 由题可知,∵三棱锥每个面都是腰为2的等腰三角形,由正视图可得如右俯视图,且三棱锥高为h=1,则体积V=Sh=××1=.
2.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.
[答案]
[解析] 由侧视图、俯视图知该几何体是高为2、底面积为 ×2×(2+4)=6的四棱锥,其体积为×6×2=4.而直三棱柱的体积为×2×2×4=8,则该几何体的体积是原直三棱柱的体积的.
3.如图,直角梯形ABCD中,AD⊥DC,AD∥BC,BC=2CD=2AD=2,若将该直角梯形绕BC边旋转一周,则所得的几何体的表面积为________.
[答案] (+3)π
[解析] 根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为π·1·+2π·12+π·12=(+3)π.
考点三、多面体与球的切、接问题
【例3】在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
[答案] B
[解析] 由AB⊥BC,AB=6,BC=8,得AC=10,要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则×6×8=×(6+8+10)·r,则r=2.
此时2r=4>3,不合题意.
因此球与三棱柱的上、下底面相切时,球的半径R最大.
由2R=3,即R=.
故球的最大体积V=πR3=π.
【变式1】若本例中的条件变为“直三棱柱ABCA1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.
[解析] 将直三棱柱补形为长方体ABECA′B′E′C′,
则球O是长方体ABECA′B′E′C′的外接球,
∴体对角线BC′的长为球O的直径.
因此2R==13,
故S球=4πR2=169π.
【变式2】若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.
[解析] 如图,设球心为O,半径为r,
则在Rt△AOF中,(4-r)2+()2=r2,
解得r=,
则球O的体积V球=πr3=π×3=.
【类题通法】
1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.
2.若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.
【对点训练】
1.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥OABC体积的最大值为36,则球O的表面积为( )
A.36π B.64π C.144π D.256π
[答案] C
[解析] 如图,设球的半径为R,∵∠AOB=90°,∴S△AOB=R2.
∵VOABC=VCAOB,而△AOB面积为定值,
∴当点C到平面AOB的距离最大时,VOABC最大,
∴当C为与球的大圆面AOB垂直的直径的端点时,体积VOABC最大为×R2×R=36,
∴R=6,∴球O的表面积为4πR2=4π×62=144π.故选C.
2.三棱锥P ABC中,PA⊥平面ABC,AC⊥BC,AC=BC=1,PA=,则该三棱锥外接球的表面积为( )
A.5π B.π C.20π D.4π
[答案] A
[解析] 把三棱锥P ABC看作由一个长、宽、高分别为1、1、的长方体截得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为=,故外接球半径为,表面积为4π×2=5π.
3.一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,则它的外接球的体积为________.
[答案]
[解析] 由直六棱柱的外接球的直径为直六棱柱中最长的对角线,知该直六棱柱的外接球的直径为=5,∴其外接球的表面积为.