直线、平面平行的判定及其性质
【考点梳理】
1.直线与平面平行的判定与性质
判定
性质
定义
定理
图形
条件
a∩α=∅
a⊂α,b⊄α,a∥b
a∥α
a∥α,a⊂β,
α∩β=b
结论
a∥α
b∥α
a∩α=∅
a∥b
2.面面平行的判定与性质
判定
性质
定义
定理
图形
条件
α∩β=∅
a⊂β,b⊂β,
a∩b=P,
a∥α,b∥α
α∥β,
α∩γ=a,
β∩γ=b
α∥β,a⊂β,
结论
α∥β
α∥β
a∥b
a∥α
3.与垂直相关的平行的判定
(1)a⊥α,b⊥α⇒a∥b.
(2)a⊥α,a⊥β⇒α∥β.
【考点突破】
考点一、与线、面平行相关命题真假的判断
【例1】已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )
A.m∥α,n∥α,则m∥n B.m∥n,m∥α,则n∥α
C.m⊥α,m⊥β,则α∥β D.α⊥γ,β⊥γ,则α∥β
[答案] C
[解析] A中,m与n平行、相交或异面,A不正确;B中,n∥α或n⊂α,B不正确;根据线面垂直的性质,C正确;D中,α∥β或α与β相交于一条直线,D错误.
【类题通法】
1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.
2.(1)结合题意构造或绘制图形,结合图形作出判断.
(2)特别注意定理所要求的条件是否完备,图形是否有特殊情形,通过举反例否定结论或用反证法推断命题是否正确.
【对点训练】
若m,n表示不同的直线,α,β表示不同的平面,则下列结论中正确的是( )
A.若m∥α,m∥n,则n∥α
B.若m⊂α,n⊂β,m∥β,n∥α,则α∥β
C.若α⊥β,m∥α,n∥β,则m∥n
D.若α∥β,m∥α,n∥m,n⊄β,则n∥β
[答案] D
[解析] 在A中,若m∥α,m∥n,则n∥α或n⊂α,故A错误.在B中,若m⊂α,n⊂β,m∥β,n∥α,则α与β相交或平行,故B错误.在C中,若α⊥β,m∥α,n∥β,则m与n相交、平行或异面,故C错误.在D中,若α∥β,m∥α,n∥m,n⊄β,则由线面平行的判定定理得n∥β,故D正确.
考点二、直线与平面平行的判定与性质
【例2】如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求四面体N-BCM的体积.
[解析] (1)由已知得AM=AD=2.
如图,取BP的中点T,连接AT,TN,
由N为PC中点知TN∥BC,TN=BC=2.
又AD∥BC,故TN綉AM,所以四边形AMNT为平行四边形,于是MN∥AT.
因为AT⊂平面PAB,MN⊄平面PAB,
所以MN∥平面PAB.
(2)因为PA⊥平面ABCD,N为PC的中点,
所以N到平面ABCD的距离为PA.
如图,取BC的中点E,连接AE.由AB=AC=3得AE⊥BC,AE==.
由AM∥BC得M到BC的距离为,故S△BCM=×4×=2.
所以四面体N-BCM的体积VN-BCM=×S△BCM×=.
【类题通法】
1.判断或证明线面平行的常用方法有:
(1)利用反证法(线面平行的定义);
(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);
(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);
(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).
2
.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.
【对点训练】
如图,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=,三棱锥PABD的体积V=,求A到平面PBC的距离.
[解析] (1)设BD与AC的交点为O,连接EO.
因为四边形ABCD为矩形,
所以O为BD的中点,
又E为PD的中点,
所以EO∥PB.
因为EO⊂平面AEC,PB⊄平面AEC,
所以PB∥平面AEC.
(2)由V=PA·AB·AD=AB,
又V=,可得AB=.
作AH⊥PB交PB于点H.
由题设知BC⊥平面PAB,所以BC⊥AH,
故AH⊥平面PBC.
在Rt△PAB中,由勾股定理可得PB=,所以AH==.
所以A到平面PBC的距离为.
考点三、平面与平面平行的判定与性质
【例3】如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:
(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.
[解析] (1)∵G,H分别是A1B1,A1C1的中点,
∴GH是△A1B1C1的中位线,GH∥B1C1.
又∵B1C1∥BC,
∴GH∥BC,
∴B,C,H,G四点共面.
(2)在△ABC中,E,F分别为AB,AC的中点,
∴EF∥BC.
∵EF⊄平面BCHG,BC⊂平面BCHG,
∴EF∥平面BCHG.
∵A1G綊EB,
∴四边形A1EBG是平行四边形,则A1E∥GB.
∵A1E⊄平面BCHG,GB⊂平面BCHG,
∴A1E∥平面BCHG.
∵A1E∩EF=E,
∴平面EFA1∥平面BCHG.
【变式1】在本例条件下,若点D为BC1的中点,求证:HD∥平面A1B1BA.
[解析] 如图所示,连接HD,A1B,
∵D为BC1的中点,H为A1C1的中点,
∴HD∥A1B.
又HD⊄平面A1B1BA,
A1B⊂平面A1B1BA,
∴HD∥平面A1B1BA.
【变式2】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.
[解析] 如图所示,连接A1C交AC1于点M,
∵四边形A1ACC1是平行四边形,
∴M是A1C的中点,连接MD,
∵D为BC的中点,
∴A1B∥DM.
∵A1B⊂平面A1BD1,DM⊄平面A1BD1,
∴DM∥平面A1BD1,
又由三棱柱的性质知,D1C1綉BD,
∴四边形BDC1D1为平行四边形,
∴DC1∥BD1.
又DC1⊄平面A1BD1,BD1⊂平面A1BD1,
∴DC1∥平面A1BD1,
又DC1∩DM=D,DC1,DM⊂平面AC1D,
因此平面A1BD1∥平面AC1D.
【变式3】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求的值.
[解析] 连接A1B交AB1于O,连接OD1.
由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,所以BC1∥D1O,则==1.
又由题设=,∴=1,即=1.
【类题通法】
1.判定面面平行的主要方法:
(1)面面平行的判定定理.
(2)线面垂直的性质(垂直于同一直线的两平面平行).
2.面面平行的性质定理的作用:
(1)判定线面平行;(2)判断线线平行,线线、线面、面面平行的相互转化是解决与平行有关的问题的指导思想.解题时要看清题目的具体条件,选择正确的转化方向.
【对点训练】
一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);
(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.
[解析] (1)点F,G,H的位置如图所示.
(2)平面BEG∥平面ACH,证明如下:
因为ABCD-EFGH为正方体,
所以BC∥FG,BC=FG,
又FG∥EH,FG=EH,
所以BC∥EH,BC=EH,
于是四边形BCHE为平行四边形,
所以BE∥CH.
又CH⊂平面ACH,BE⊄平面ACH,
所以BE∥平面ACH.
同理BG∥平面ACH.
又BE∩BG=B,
所以平面BEG∥平面ACH.