九年级数学上册22.3实际问题与二次函数同步检测试题(新人教版)
加入VIP免费下载

本文件来自资料包: 《九年级数学上册22.3实际问题与二次函数同步检测试题(新人教版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎ ‎ 姓名 学号 班级 ‎ ‎---------------------------------------------------装-----------------------------------订----------------------------------线--------------------------------------------------‎ ‎ ‎ ‎22.3 实际问题与二次函数 一、选择题(每小题3分,总计30分。请将唯一正确答案的字母填写在表格内)‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ 选项 ‎1.将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x元时,获得的利润为y元,则下列关系式正确的是(  )‎ A.y=(x﹣35)(400﹣5x) B.y=(x﹣35)(600﹣10x)‎ C.y=(x+5)(200﹣5x) D.y=(x+5)(200﹣10x)‎ ‎2.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为‎10m,此时水面到桥拱的距离是‎4m,则抛物线的函数关系式为(  )‎ A.y= B.y=﹣ C.y=﹣ D.y=‎ ‎3.共享单车为市民出行带来了方便,某单车公式第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是(  )‎ A.y=a(1+x)2 B.y=a(1﹣x)‎2 ‎C.y=(1﹣x)2+a D.y=x2+a ‎4.如图,一边靠学校院墙,其它三边用‎40米长的篱笆围成一个矩形花圃,设矩形ABCD的边AB=x米,面积为S平方米,则下面关系式正确的是(  )‎ A.S=x(40﹣x) B.S=x(40﹣2x) C.S=x(10﹣x) D.S=10(2x﹣20)‎ ‎5.如图,已知正方形ABCD的边长为4,P是BC边上一动点(与B,C不重合)连接AP,作PE⊥AP交∠BCD的外角平分线于E,设BP=x,△PCE的面积为y,则y与x的函数关系式是(  )‎ A.y=﹣x2+4x B. C. D.y=x2﹣4x ‎6.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=﹣4x+440,要获得最大利润,该商品的售价应定为(  )‎ A.60元 B.70元 C.80元 D.90元 ‎7.运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:‎ ‎ t ‎ 0‎ ‎ 1‎ ‎ 2‎ ‎ 3‎ ‎ 4‎ ‎ 5‎ ‎ 6‎ ‎ 7‎ ‎…‎ ‎ h ‎ 0‎ ‎ 8‎ ‎ 14‎ ‎ 18‎ ‎ 20‎ ‎ 20‎ ‎ 18‎ ‎ 14‎ ‎…‎ 下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9.5s时落地:④足球被踢出7.5s时,距离地面的高度是11.25m,其中不正确结论的个数是(  )‎ A.1 B.‎2 ‎C.3 D.4‎ ‎8.苹果熟了,从树上落下所经过的路程s与下落时间t满足S=gt2(g=9.8),则s与t的函数图象大致是(  )‎ ‎9.点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是(  )‎ A.②④ B.②③ C.①③④ D.①②④‎ ‎10.抛物线y=x2‎ 6‎ ‎﹣2x﹣15,y=4x﹣23,交于A、B点(A在B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E再到达x轴上的某点F,最后运动到点B.若使点P动的总路径最短,则点P运动的总路径的长为(  )‎ A.10 B.‎7‎ C.5 D.8‎ 二、 填空题(每题4分,总计20分)‎ ‎11.如图,用长为‎10米的篱笆,一面靠墙(墙的长度超过‎10米),围成一个矩形花圃,设矩形垂直于墙的一边长为x米,花圃面积为S平方米,则S关于x的函数解析式是   (不写定义域).‎ ‎12.某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.‎ x(元∕件)‎ ‎15‎ ‎18‎ ‎20‎ ‎22‎ ‎…‎ y(件)‎ ‎250‎ ‎220‎ ‎200‎ ‎180‎ ‎…‎ 按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是   .‎ ‎13.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是   m.‎ ‎14.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为‎900m(篱笆的厚度忽略不计),当AB=   m时,矩形土地ABCD的面积最大.‎ ‎15.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满足=k(k≠0,1),则称y1,y2互为“相关抛物线”.给出如下结论:‎ ‎①y1与y2的开口方向,开口大小不一定相同;‎ ‎②y1与y2的对称轴相同;‎ ‎③若y2的最值为m,则y1的最值为k2m;‎ ‎④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.‎ 其中正确的结论的序号是   (把所有正确结论的序号都填在横线上).‎ 三.解答题(共6小题,总计70分)‎ ‎16.已知函数y=0.5x2+x﹣2.5.请用配方法写出这个函数的对称轴和顶点坐标.‎ ‎17.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了‎100米木栏.‎ ‎(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;‎ ‎(2)求矩形菜园ABCD面积的最大值.‎ ‎18.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.‎ ‎(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;‎ ‎(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;‎ ‎(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?‎ 6‎ ‎19.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的 图象是线段,图2的图象是抛物线)‎ ‎(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)‎ ‎(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.‎ ‎(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?‎ ‎20.有一座抛物线拱型桥,在正常水位时,水面BC的宽为‎10米,拱桥的最高点D到水面BC的距离DO为‎4米,点O是BC的中点,如图,以点O为原点,直线BC为x,建立直角坐标xOy.‎ ‎(1)求该抛物线的表达式;‎ ‎(2)如果水面BC上升3米(即OA=3)至水面EF,点E在点F的左侧,求水面宽度EF的长.‎ ‎21.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.‎ ‎(1)求抛物线的函数表达式.‎ ‎(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?‎ ‎(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.‎ ‎  ‎ 6‎ 参考答案 ‎ ‎ 一.选择题(共10小题)‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ 选项 A C A B C C B B A A 二.填空题(共5小题)‎ ‎11.S=﹣2x2+10x ‎12.w=﹣10x2+500x﹣4000.‎ ‎13.24‎ ‎14.150.‎ ‎15.①②④.‎ 三.解答题(共6小题)‎ ‎16.解:y=0.5x2+x﹣2.5‎ ‎=(x2+2x+1)﹣﹣‎ ‎=(x+1)2﹣3,‎ 故抛物线的对称轴为直线x=﹣1,顶点坐标为(﹣1,﹣3).‎ ‎ ‎ ‎17.解:(1)设AB=xm,则BC=(100﹣2x)m,‎ 根据题意得x(100﹣2x)=450,解得x1=5,x2=45,‎ 当x=5时,100﹣2x=90>20,不合题意舍去;‎ 当x=45时,100﹣2x=10,‎ 答:AD的长为10m;‎ ‎(2)设AD=xm,‎ ‎∴S=x(100﹣x)=﹣(x﹣50)2+1250,‎ 当a≥50时,则x=50时,S的最大值为1250;‎ 当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,‎ 综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.‎ ‎ ‎ ‎18.解:(1)设y1与x之间的函数关系式为y1=kx+b,‎ ‎∵经过点(0,168)与(180,60),‎ ‎∴,解得:,‎ ‎∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);‎ ‎(2)由题意,可得当0≤x≤50时,y2=70;‎ 当130≤x≤180时,y2=54;‎ 当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,‎ ‎∵直线y2=mx+n经过点(50,70)与(130,54),‎ ‎∴,解得,‎ ‎∴当50<x<130时,y2=﹣x+80.‎ 综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;‎ ‎(3)设产量为xkg时,获得的利润为W元,‎ ‎①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,‎ ‎∴当x=50时,W的值最大,最大值为3400;‎ ‎②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,‎ ‎∴当x=110时,W的值最大,最大值为4840;‎ ‎③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,‎ ‎∴当x=130时,W的值最大,最大值为4680.‎ 6‎ 因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.‎ ‎ ‎ ‎19.解:(1)当x=6时,y1=3,y2=1,‎ ‎∵y1﹣y2=3﹣1=2,‎ ‎∴6月份出售这种蔬菜每千克的收益是2元.‎ ‎(2)设y1=mx+n,y2=a(x﹣6)2+1.‎ 将(3,5)、(6,3)代入y1=mx+n,‎ ‎,解得:,‎ ‎∴y1=﹣x+7;‎ 将(3,4)代入y2=a(x﹣6)2+1,‎ ‎4=a(3﹣6)2+1,解得:a=,‎ ‎∴y2=(x﹣6)2+1=x2﹣4x+13.‎ ‎∴y1﹣y2=﹣x+7﹣(x2﹣4x+13)=﹣x2+x﹣6=﹣(x﹣5)2+.‎ ‎∵﹣<0,‎ ‎∴当x=5时,y1﹣y2取最大值,最大值为,‎ 即5月份出售这种蔬菜,每千克的收益最大.‎ ‎(3)当t=4时,y1﹣y2=﹣x2+x﹣6=2.‎ 设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,‎ 根据题意得:2t+(t+2)=22,‎ 解得:t=4,‎ ‎∴t+2=6.‎ 答:4月份的销售量为4万千克,5月份的销售量为6万千克.‎ ‎ ‎ ‎20.解:(1)设抛物线解析式为:y=ax2+c,‎ 由题意可得图象经过(5,0),(0,4),‎ 则,‎ 解得:a=﹣,‎ 故抛物线解析为:y=﹣x2+4;‎ ‎(2)由题意可得:y=3时,‎ ‎3=﹣x2+4‎ 解得:x=±,‎ 故EF=5,‎ 答:水面宽度EF的长为5m.‎ ‎ ‎ ‎21.解:(1)设抛物线解析式为y=ax(x﹣10),‎ ‎∵当t=2时,AD=4,‎ ‎∴点D的坐标为(2,4),‎ ‎∴将点D坐标代入解析式得﹣16a=4,‎ 解得:a=﹣,‎ 抛物线的函数表达式为y=﹣x2+x;‎ ‎(2)由抛物线的对称性得BE=OA=t,‎ ‎∴AB=10﹣2t,‎ 当x=t时,AD=﹣t2+t,‎ ‎∴矩形ABCD的周长=2(AB+AD)‎ 6‎ ‎=2[(10﹣2t)+(﹣t2+t)]‎ ‎=﹣t2+t+20‎ ‎=﹣(t﹣1)2+,‎ ‎∵﹣<0,‎ ‎∴当t=1时,矩形ABCD的周长有最大值,最大值为;‎ ‎(3)如图,‎ 当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),‎ ‎∴矩形ABCD对角线的交点P的坐标为(5,2),‎ 当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;‎ 当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;‎ ‎∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,‎ 当点G、H分别落在线段AB、DC上时,直线GH过点P,必平分矩形ABCD的面积,‎ ‎∵AB∥CD,‎ ‎∴线段OD平移后得到的线段GH,‎ ‎∴线段OD的中点Q平移后的对应点是P,‎ 在△OBD中,PQ是中位线,‎ ‎∴PQ=OB=4,‎ 所以抛物线向右平移的距离是4个单位.‎ ‎ ‎ 6‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料