由莲山课件提供http://www.5ykj.com/ 资源全部免费
课时分层集训(十七) 功能关系 能量守恒定律
(限时:40分钟)
(对应学生用书第295页)
[基础对点练]
功能关系的理解及应用
1.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中( )
【导学号:84370235】
A.动能增加了1 900 J
B.动能增加了2 000 J
C.重力势能减小了1 900 J
D.重力势能减小了2 000 J
C [根据动能定理,物体动能的增量等于物体所受所有力做功的代数和,即增加的动能为ΔEk=WG+Wf=1 900 J-100 J=1 800 J,A、B项错误;重力做功与重力势能改变量的关系为WG=-ΔEp,即重力势能减少了1 900 J,C项正确,D项错误.]
2. (2017·全国Ⅲ卷)如图549所示,一质量为m、长度为l的均匀柔软细绳PQ竖直悬挂.用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相距l.重力加速度大小为g.在此过程中,外力做的功为( )
图549
A.mgl B.mgl
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C.mgl D.mgl
A [将绳的下端Q缓慢向上拉至M点,相当于使下部分的绳的重心升高l,故重力势能增加mg·=mgl,由功能关系可知A项正确.]
3.(多选)如图5410所示,一固定斜面倾角为30°,一质量为m的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g.若物块上升的最大高度为H,则此过程中,物块的( )
图5410
A.动能损失了2mgH
B.动能损失了mgH
C.机械能损失了mgH
D.机械能损失了mgH
AC [由于上升过程中的加速度大小等于重力加速度的大小,根据牛顿第二定律得mgsin 30°+Ff=mg,解得Ff=mg,由动能定理可得ΔEk=mgH+FfL=2mgH,选项A正确,B错误;机械能的减少量在数值上等于克服摩擦力做的功,则WFf=FfL=mgH,选项C正确,D错误.]
(多选)(2018·青岛模拟)如图所示,一根原长为L的轻弹簧,下端固定在水平地面上,一个质量为m的小球,在弹簧的正上方从距地面高度为H处由静止下落压缩弹簧.若弹簧的最大压缩量为x,小球下落过程受到的空气阻力恒为Ff,则小球从开始下落至最低点的过程( )
A.小球动能的增量为零
B.小球重力势能的增量为mg(H+x-L)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C.弹簧弹性势能的增量为(mg-Ff)(H+x-L)
D.系统机械能减小FfH
AC [小球下落的整个过程中,开始时速度为零,结束时速度也为零,所以小球动能的增量为0,故A正确;小球下落的整个过程中,重力做功WG=mgh=mg(H+x-L),根据重力做功量度重力势能的变化WG=-ΔEp得:小球重力势能的增量为-mg(H+x-L),故B错误;根据动能定理得:WG+WFf+W弹=0-0=0,所以W弹=-(mg-Ff)(H+x-L),根据弹簧弹力做功量度弹性势能的变化W弹=-ΔEp得:弹簧弹性势能的增量为(mg-Ff)(H+x-L),故C正确;系统机械能的减少等于重力、弹力以外的力做的功,所以小球从开始下落至最低点的过程,克服阻力做的功为:Ff(H+x-L),所以系统机械能减小为:Ff(H+x-L),故D错误.]
能量守恒定律的理解及应用
4. 如图5411是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( )
【导学号:84370236】
图5411
A.缓冲器的机械能守恒
B.摩擦力做功消耗机械能
C.垫板的动能全部转化为内能
D.弹簧的弹性势能全部转化为动能
B [由于车厢撞击弹簧压缩的过程中存在克服摩擦力做功,所以缓冲器的机械能减少,选项A错误,B正确;弹簧压缩的过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C、D错误.]
5.将小球以10 m/s的初速度从地面竖直向上抛出,取地面为零势能面,小球在上升过程中的动能Ek、重力势能Ep与上升高度h
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
间的关系分别如图5412中两直线所示.g取10 m/s2,下列说法正确的是( )
图5412
A.小球的质量为0.2 kg
B.小球受到的阻力(不包括重力)大小为0.20 N
C.小球动能与重力势能相等时的高度为 m
D.小球上升到2 m时,动能与重力势能之差为0.5 J
D [在最高点,Ep=mgh得m=0.1 kg,A项错误;由除重力以外其他力做功E其=ΔE可知:-fh=E高-E低,E为机械能,解得f=0.25 N,B项错误;设小球动能和重力势能相等时的高度为H,此时有mgH=mv2,由动能定理得:-fH-mgH=mv2-mv,解得H= m,故C项错;当上升h′=2 m时,由动能定理得:-fh′-mgh′=Ek2-mv,解得Ek2=2.5 J,Ep2=mgh′=2 J,所以动能与重力势能之差为0.5 J,故D项正确.]
6.(多选)(2018·江西新余质检)如图5413所示,竖直光滑杆固定不动,套在杆上的轻质弹簧下端固定,将套在杆上的滑块向下压缩弹簧至离地高度h=0.1 m处,滑块与弹簧不拴接.现由静止释放滑块,通过传感器测量到滑块的速度和离地高度h并作出滑块的Ekh图象,其中高度从0.2 m上升到0.35 m范围内图象为直线,其余部分为曲线,以地面为零重力势能面,g取10 m/s2,由图象可知( )
【导学号:84370237】
图5413
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.小滑块的质量为0.1 kg
B.轻弹簧原长为0.2 m
C.弹簧最大弹性势能为0.5 J
D.小滑块的重力势能与弹簧的弹性势能总和最小为0.4 J
BCD [在从0.2 m上升到0.35 m范围内,ΔEk=ΔEp=mgΔh,图线的斜率绝对值k== N=2 N=mg,所以m=0.2 kg,故A错误;在Ekh图象中,图线的斜率表示滑块所受的合外力,由于高度从0.2 m上升到0.35 m范围内图象为直线,其余部分为曲线,说明滑块从0.2 m上升到0.35 m范围内所受作用力为恒力,从h=0.2 m开始滑块与弹簧分离,弹簧的原长为0.2 m,故B正确;根据能的转化与守恒可知,当滑块上升至最大高度时,增加的重力势能即为弹簧最大弹性势能,所以Epm=mgΔh=0.2×10×(0.35-0.1) J=0.5 J,故C正确;由图可知,当h=0.18 m时的动能最大为Ekm=0.3 J,在滑块整个运动过程中,系统的动能、重力势能和弹性势能之间相互转化,因此动能最大时,滑块的重力势能与弹簧的弹性势能总和最小,根据能量守恒定律可知E′=E-Ekm=Epm+mgh-Ekm=0.5 J+0.2×10×0.1 J-0.3 J=0.4 J,故D正确.]
摩擦力做功与能量转化关系
7. 如图5414所示,木块A放在木块B的左端上方,用水平恒力F将A拉到B的右端,第一次将B固定在地面上,F做功W1,生热Q1;第二次让B在光滑水平面上可自由滑动,F做功W2,生热Q2,则下列关系中正确的是( )
图5414
A.W1