八年级数学上册第六章数据的分析检测试题(北师大版带答案)
加入VIP免费下载

本文件来自资料包: 《八年级数学上册第六章数据的分析检测试题(北师大版带答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第六章 数据的分析质量评估 ‎(时间:90分钟 满分:120分)‎ 一、选择题(每小题3分,共30分)‎ ‎1.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31.则这组数据的众数是 ( )‎ A.1.71 B.‎1.85 ‎C.1.90 D.2.31‎ ‎2.某特警部队为了选拔“神枪手”,举行了‎1000 m射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中正确的是(  )‎ A.甲的成绩比乙的成绩稳定 B.乙的成绩比甲的成绩稳定 C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定 ‎3.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )‎ A.12,13 B.12,‎14 C.13,14 D.13,16‎ 4. 某日福建省九个城市的最高气温(℃)统计如下表:针对这组数据,下列说法正确的是 (  )‎ A.众数是30 B.极差是‎1 C.中位数是31 D.平均数是28‎ 城市 最高气温/℃‎ 福州 ‎29‎ 莆田 ‎28‎ 泉州 ‎30‎ 厦门 ‎31‎ 漳州 ‎31‎ 龙岩 ‎30‎ 8‎ 三明 ‎30‎ 南平 ‎32‎ 宁德 ‎28‎ ‎5.七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:‎ 节水量/m3‎ ‎0.2‎ ‎0.25‎ ‎0.3‎ ‎0.4‎ ‎0.5‎ 家庭数/个 ‎1‎ ‎2‎ ‎2‎ ‎4‎ ‎1‎ 那么这组数据的众数和平均数分别是 (  )‎ A.0.4‎和0.34 B.0.4和‎0.3 C.0.25和0.34 D.0.25和0.3‎ ‎6.一组数据:3,2,1,2,2.它的众数、中位数、方差分别是 (  )‎ A.2,1,0.4 B.2,2,‎0.4 C.3,1,2 D.2,1,0.2‎ ‎7.下列选项中,能够反映一组数据离散程度的统计量是 (  )‎ A.平均数 B.中位数 C.众数 D.方差 ‎8.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖):‎ 组员 甲 乙 丙 丁 戊 方差 平均成绩 得分 ‎81‎ ‎79‎ ‎80‎ ‎82‎ ‎80‎ 那么被遮盖的两个数据依次是 (  )‎ A.80,2 B.80, C.78,2 D.78,‎ ‎9.为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并绘制成折线统计图(如图所示),那么关于该班45名同学一周参加体育锻炼时间的说法错误的是(  )‎ A.众数是9小时 B.中位数是9 小时 C.平均数是9小时 D.锻炼时间不低于9小时的有14人 8‎ ‎10.一组数据x1,x2,…,xn的平均数为5,方差为16,其中n是正整数,则另一组数据3x1+2,3x2+2,…,3xn+2的平均数和标准差分别是(  )‎ A.15,144 B‎.17,144 C.17,12 D.7,16‎ 二、填空题(每小题4分,共32分)‎ ‎11.若x1,x2,x3的平均数为3,则5x1+1,5x2+2,5x3+3的平均数为  . ‎ ‎12.在某次歌手大赛中,10位评委对某歌手打分分别为:9.8,9.0,9.5,9.7,9.6,9.0,9.0,9.5,9.9,8.9.则去掉一个最高分和一个最低分后,该歌手的得分应是    分.(精确到0.01) ‎ ‎13.在“讲政策、讲法制、讲道德、讲恩情”的演讲比赛中,五位选手的成绩如下:这组成绩的极差是    分. ‎ 选手编号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 成绩/分 ‎85‎ ‎92‎ ‎90‎ ‎95‎ ‎88‎ ‎14.在一次数学知识与能力测试中,八年级(1)班42人的平均成绩是78分,八年级(2)班48人的平均成绩是81分,那么八年级这两个班的平均成绩是    分. ‎ ‎15.某地连续九天的最高气温统计如下表所示,则这组数据的中位数与众数分别是    ℃,    ℃. ‎ 最高气温/℃‎ ‎22‎ ‎23‎ ‎24‎ ‎25‎ 天数 ‎1‎ ‎2‎ ‎2‎ ‎4‎ ‎16.已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为    . ‎ ‎17.在一次数学知识竞赛中,某班20名学生的成绩如下表所示:‎ 这些学生成绩的众数、中位数和平均数分别为        ‎ 成绩/分 ‎50‎ ‎60‎ ‎70‎ ‎80‎ ‎90‎ 人数 ‎2‎ ‎3‎ ‎6‎ ‎7‎ ‎2‎ 18. 为了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为    .‎ 8‎ ‎ ‎ 三、解答题(共58分)‎ ‎19.(8分)甲、乙两位同学五次数学测验成绩如下表:‎ 请你在表中的空白处填上适当的数,用学到的统计知识对两位同学的成绩(单位:分)进行分析,并写出一条合理化建议.‎ 测验/次 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 平均分 方差 甲 ‎75‎ ‎90‎ ‎96‎ ‎83‎ ‎81‎ 乙 ‎86‎ ‎70‎ ‎90‎ ‎95‎ ‎84‎ ‎20.(8分)某班通过一次射击测试,在甲、乙两名同学中选出一名同学代表班级参加校射击比赛,这两位同学在相同条件下各射靶5次,所测得的成绩分别如下:(单位:环)‎ 甲 ‎9.6‎ ‎9.5‎ ‎9.3‎ ‎9.4‎ ‎9.7‎ 乙 ‎9.3‎ ‎9.8‎ ‎9.6‎ ‎9.3‎ ‎9.5‎ 根据测试的成绩,你认为应该由谁代表班级参赛?‎ ‎21.(10分)下面是某校初三(1)班20名学生某次数学测验的成绩统计表:‎ 成绩/分 ‎60‎ ‎70‎ ‎80‎ ‎90‎ ‎100‎ 人数/人 ‎1‎ ‎5‎ x y ‎2‎ ‎(1)若这20名学生成绩的平均分数为82分,求x和y的值;‎ ‎(2)在(1)的条件下,设这20名学生本次测验的成绩的众数为a,中位数为b,求a,b.‎ 8‎ ‎22.(10分)振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3∶4∶5∶8∶6,又知此次调查中捐款25元和30元的学生一共42人.‎ ‎(1)他们一共调查了多少人?‎ ‎(2)这组数据的众数、中位数各是多少?‎ ‎(3)若该校共有1560名学生,估计全校学生捐款多少元.‎ ‎23.(10分)在八次数学测试中,甲、乙两人的成绩如下:‎ 甲:89,93,88,91,94,90,88,87;‎ 乙:92,90,85,93,95,86,87,92.‎ 请你从下列角度比较两人成绩的情况,并说明理由.‎ ‎(1)根据平均数来判断两人的成绩谁优谁次;‎ ‎(2)根据众数来判断两人的成绩谁优谁次;‎ ‎(3)根据中位数来判断两人的成绩谁优谁次;‎ ‎(4)根据方差来判断两人的成绩谁更稳定.‎ 8‎ ‎24.(12分)为了从甲、乙两名同学中选拔一人参加射击比赛,在同等的条件下,教练给甲、乙两名同学安排了一次射击测验,每人打10发子弹,下面是甲、乙两人各自的射击情况记录(其中乙的情况记录表上射中9,10环的子弹数因被墨水污染而看不清楚,但是教练记得乙射中9,10环的子弹数均不为0发):‎ 甲 中靶环数 ‎5‎ ‎6‎ ‎8‎ ‎9‎ ‎10‎ 射中此环的子弹数/发 ‎4‎ ‎1‎ ‎2‎ ‎2‎ ‎1‎ 乙 中靶环数 ‎5‎ ‎6‎ ‎7‎ ‎9‎ ‎10‎ 射中此环的子弹数/发 ‎3‎ ‎1‎ ‎3‎ ‎(1)求甲同学在这次测验中平均每发射中的环数;‎ ‎(2)根据这次测验的情况,如果你是教练,你认为选谁参加比赛比较合适?并说明理由.(结果保留到小数点后1位)‎ 8‎ ‎【答案与解析】‎ ‎1.B ‎2.B ‎3.B(解析:众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大重新排列后,找出最中间的那个数或中间两个数的平均数.)‎ ‎4.A(解析:因为30出现了3次,出现的次数最多,所以众数是30.)‎ ‎5.A ‎6.B ‎7.D ‎8.C(解析:根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.)‎ ‎9.D(解析:由图可知,锻炼9小时的有18人,所以9在这组数中出现18次为最多,所以众数是9小时.把数据从小到大排列,中位数是第23个数,第23个数是9,所以中位数是9小时.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9(小时),所以平均数是9小时.故选D.)‎ ‎10.C ‎11.17(解析:由(x1+x2+x3)÷3=3,得x1+x2+x3=9,所以(5x1+1+5x2+2+5x3+3)÷3=[5(x1+x2+x3)+6]÷3=17.)‎ ‎12.9.39‎‎(解析:该歌手的得分=(9.8+9.0+9.5+9.7+9.6+9.0+9.0+9.5)÷8≈9.39.)‎ ‎13.10(解析:由题意,可知极差为95-85=10(分).)‎ ‎14.79.6(解析:八年级这两个班的平均成绩==79.6(分).)‎ ‎15.24 25(解析:本组数据共9个,从小到大排列后第5个数是24,众数为25.)‎ ‎16.4(解析:1+2+0-1+x+1=1×6,所以x=3,则这组数据的极差=3-(-1)=4.)‎ ‎17.80分,70分,72分 ‎18.17小时 ‎19.甲:85,53.2;乙:85,70.4.从上述数据可以看出,乙同学的数学成绩波动较大,不够稳定,希望乙同学在学习上查缺补漏,加强能力训练.‎ ‎20.解:(9.6+9.5+9.3+9.4+9.7)=9.5,(9.3+9.8+9.6+9.3+9.5)=9.5.[(9.6-9.5)2+(9.5-9.5)2+…+(9.7-9.5)2]=0.02,[(9.3-9.5)2+(9.8-9.5)2+…+(9.5-9.5)2]=0.036.因为,,所以甲的成绩较稳定,应该由甲代表班级去参赛.‎ ‎21.解:(1)由题意,得:‎ 8‎ 化简,得解得 (2)由(1),得这组数据为:60分1人,70分5人,80分5人,90分7人,100分2人.∴众数a=90(分),中位数b=80(分).‎ ‎22.解:(1)设捐款30元的有6x人,则8x+6x=42.∴x=3.∴捐款人数共有3x+4x+5x+8x+6x=78(人). (2)由图可知众数为25元;由于本组数据的个数为78,按大小顺序排列后处于中间位置的两个数都是25元,故中位数为25元.‎ ‎(3)全校共捐款(9×10+12×15+15×20+24×25+18×30)×=34200(元).‎ ‎23.解:(1)甲成绩的平均数为(89+93+88+91+94+90+88+87)÷8=90,乙成绩的平均数为(92+90+85+93+95+86+87+92)÷8=90,∴从平均数的角度看,两人的成绩相当. (2)甲成绩的众数为88,乙成绩的众数为92,∴从众数的角度看,乙的成绩稍好. (3)甲成绩的中位数为89.5,乙成绩的中位数为91,∴从中位数的角度看,乙的成绩稍好. (4)甲成绩的方差为[(89-90)2+(93-90)2+(88-90)2+(91-90)2+(94-90)2+(90-90)2+(88-90)2+(87-90)2]=5.5;乙成绩的方差为×[(92-90)2+(90-90)2+(85-90)2+(93-90)2+(95-90)2+(86-90)2+(87-90)2+(92-90)2]=11.5.∴甲的成绩更稳定.‎ ‎24.解:(1)甲同学在这次测验中平均每发射中的环数为(5×4+6×1+8×2+9×2+10×1)÷10=7(环). (2)①若乙同学击中9环的子弹数为1发,则击中10环的子弹数为2发.乙同学在这次测验中平均每发射中的环数为(5×3+6×1+7×3+9×1+10×2)÷10=7.1(环).在这次测验中乙同学的成绩比甲同学的成绩好,这时应选择乙同学参加射击比赛.②若乙同学击中9环的子弹数为2发,则击中10环的子弹数为1发.乙同学在这次测验中平均每发射中的环数为(5×3+6×1+7×3+9×2+10×1)÷10=7.0(环).甲同学在这次测验中的方差为×[4×(5-7)2+(6-7)2+2×(8-7)2+2×(9-7)2+(10-7)2]=3.6,×[3×(5-7)2+(6-7)2+3×(7-7)2+2×(9-7)2+(10-7)2]=3.0,因为,所以在这次测验中乙同学的成绩比甲同学的成绩更稳定,这时应该选择乙同学参加射击比赛.综上所述,应该选择乙同学参加射击比赛.‎ 8‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料