湖南衡阳永州2016-2017新高二数学暑期第一次联考试卷(理附答案)
加入VIP免费下载

本文件来自资料包: 《湖南衡阳永州2016-2017新高二数学暑期第一次联考试卷(理附答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
衡阳八中永州四中2016年下期高二年级理科实验班 第一次联考 ‎(试题卷)‎ 注意事项:‎ ‎1.本卷为衡阳八中永州四中高二年级理科实验班第一次联考试卷,分两卷。其中共22题,满分150分,考试时间为120分钟。‎ ‎2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。开考15分钟后,考生禁止入场,监考老师处理余卷。‎ ‎3.请考生将答案填写在答题卡上,选择题部分请用2B铅笔填涂,非选择题部分请用黑色0.5mm签字笔书写。考试结束后,试题卷与答题卡一并交回。‎ ‎★预祝考生考试顺利★‎ 第I卷 选择题(每题5分,共60分)‎ 本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。‎ ‎1.下列说法错误的是(  )‎ A.若命题“p∧q”为真命题,则“p∨q”为真命题 B.命题“若m>0,则方程x2+x﹣m=0有实根”的逆命题为真命题 C.命题“若a>b,则ac2>bc2”的否命题为真命题 D.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题 ‎2.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.平面OCB1的法向量=(x,y,z)为(  )‎ ‎ ‎ A.(0,1,1)      B.(1,﹣1,1)     ‎ C.(0,1,﹣1)    D.(﹣1,﹣1,1)‎ ‎3.与椭圆共焦点且过点P(2,1)的双曲线方程是(  )‎ A.     B.      ‎ C.     D.‎ ‎4.已知抛物线y2=4px(p>0)与双曲线有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为(  )‎ A.  B.   C.  D.‎ ‎5.椭圆:(a>b>0),左右焦点分别是F1,F2,焦距为2c,若直线与椭圆交于M点,满足∠MF1F2=2∠MF2F1,则离心率是(  )‎ A.    B.  C.  D.‎ ‎6.空间中有四点,,,,则两直线的夹角是(  )‎ A.    B.    C.   D. ‎ ‎7.如图,直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,,则AA1与平面AB1C1所成的角为(  )‎ A.    B.     C.  D.‎ ‎8.方程与的曲线在同一坐标系中的示意图可能是(   )‎ ‎9.如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为(   )‎ ‎ 4          ‎ ‎10.如图所示的几何体中,四边形是矩形,平面⊥平面,已知,且当规定主(正)视图方向垂直平面时,该几何体的左(侧)视图的面积为.若分别是线段上的动点,则的最小值为(  )‎ A.1     B.2     C.3     D.4‎ ‎11.椭圆+=1(a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.椭圆的离心率e满足≤e≤,则椭圆长轴的取值范围是(     )‎ A.[,1] B.[,2] C.[,] D.[,]‎ ‎12.已知直线与抛物线交于两点,是的中点,是抛物线上的点,且使得取最小值,抛物线在点处的切线为,则( )‎ A.     B.      ‎ C.     D. ‎ 第II卷 非选择题(共90分)‎ 二.填空题(每题5分,共20分)‎ ‎13.给出下列命题:‎ ‎①已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤2)=0.4,则P(ξ>2)=0.3;‎ ‎②f(x﹣1)是偶函数,且在(0,+∞)上单调递增,则;‎ ‎③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是;‎ ‎④已知a>0,b>0,函数y=2aex+b的图象过点(0,1),则的最小值是.‎ 其中正确命题的序号是   (把你认为正确的序号都填上).‎ ‎14.已知命题在区间上是减函数;命题不等式的解集为R.若命题“”为真,命题“”为假,则实数的取值范围是________.‎ ‎15.如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是  .‎ ‎15.以下五个关于圆锥曲线的命题中:‎ ‎①双曲线与椭圆有相同的焦点;‎ ‎②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的.‎ ‎③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;‎ ‎④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于5的直线有且只有两条.‎ ‎⑤过定圆C上一定点A作圆的动弦AB,O为原点,若,则动点P的轨迹为椭圆;其中真命题的序号为  (写出所有真命题的序号)‎ 三.解答题(共6题,共70分)‎ ‎17.(本题满分10分)已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0    ‎ ‎(1)若a=,且p∧q为真,求实数x的取值范围. ‎ ‎(2)若p是q的充分不必要条件,求实数a的取值范围. ‎ ‎18.(本题满分12分)如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,‎ 平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.‎ ‎(Ⅰ)证明:AG⊥平面ABCD;‎ ‎(Ⅱ)若直线BF与平面ACE所成角的正弦值为,求AG的长.‎ ‎19.(本题满分12分)已知椭圆C: +=1(a>b>0),其中F1、F2为左右焦点,O为坐标原点,直线l与椭圆交于P(x1、y1),Q(x2,y2‎ ‎)两个不同点,当直线l过椭圆C右焦点F2且倾斜角为时,原点O到直线l的距离为,又椭圆上的点到焦点F2的最近距离为﹣1‎ ‎(1)求椭圆C的方程;‎ ‎(2)以OP、OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积|ON|•|PQ|的最大值.‎ ‎20.(本题满分12分)如图,已知在直四棱柱(侧棱垂直底面的棱柱)中,,,.‎ ‎(Ⅰ)求证:平面.‎ ‎(Ⅱ)求与平面所成的角的的正弦值;‎ ‎(Ⅲ)求二面角的正弦值.‎ ‎21.(本题满分12分)已知动点M到点F(1,0)的距离,等于它到直线x=﹣1的距离.‎ ‎(Ⅰ)求点M的轨迹C的方程;‎ ‎(Ⅱ)过点F任意作互相垂直的两条直线l1,l2,分别交曲线C于点A,B和M,N.设线段AB,MN的中点分别为P,Q,求证:直线PQ恒过一个定点;‎ ‎(Ⅲ)在(Ⅱ)的条件下,求△FPQ面积的最小值.‎ ‎22.(本题满分12分)已知圆E:x2+(y﹣)2=经过椭圆C: +=1(a>b>0)的左右焦点F1,F2,且与椭圆C在第一象限的交点为A,且F1,E,A三点共线,直线l交椭圆C于M,N两点,且=λ(λ≠0)‎ ‎(1)求椭圆C的方程;‎ ‎(2)当三角形AMN的面积取得最大值时,求直线l的方程.‎ 衡阳八中永州四中2016年下期高二年级理科实验班第一次联考数学答案 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 答案 B C B B B A A A B C D D ‎13.①②‎ ‎14.‎ ‎15.90°‎ ‎16.①②④‎ ‎17.p:,q:a≤x≤a+1;                             ‎ ‎∴(1)若a=,则q:;                                         ‎ ‎∵p∧q为真,∴p,q都为真;                          ‎ ‎∴,∴;                             ‎ ‎∴实数x的取值范围为;                             ‎ ‎(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;                                        ‎ ‎∴,∴;                          ‎ ‎∴实数a的取值范围为.                  ‎ ‎18.(Ⅰ)证明:因为AE=AF,点G是EF的中点,‎ 所以AG⊥EF.‎ 又因为EF∥AD,所以AG⊥AD.…‎ 因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,‎ AG⊂平面ADEF,‎ 所以AG⊥平面ABCD.‎ ‎(Ⅱ)解:因为AG⊥平面ABCD,AB⊥AD,所以AG、AD、AB两两垂直.‎ 以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系 则A(0,0,0),B(4,0,0),C(4,4,0),‎ 设AG=t(t>0),则E(0,1,t),F(0,﹣1,t),‎ 所以=(﹣4,﹣1,t),=(4,4,0),=(0,1,t).‎ 设平面ACE的法向量为=(x,y,z),‎ 由=0, =0,得,‎ 令z=1,得=(t,﹣t,1).‎ 因为BF与平面ACE所成角的正弦值为,‎ 所以|cos<>|==,‎ 即=,解得t2=1或.‎ 所以AG=1或AG=.‎ ‎19.(1)∵直线l的倾斜角为,设F2(C,0),则直线l的方程为y=x﹣c,‎ 则,得c=1.‎ 由椭圆的几何性质可得椭圆上的点到焦点F2的最近距离为a﹣c=,得a=.‎ ‎∴椭圆C的方程为;‎ ‎(2)当直线l的斜率不存在时,P,Q两点关于x轴对称,则x1=x2,y1=﹣y2,‎ 由P(x1,y1)在椭圆上,则,而,则.‎ 知|ON|•|PQ|=;‎ 当直线l的斜率存在时,设直线l为y=kx+m,代入可得,‎ ‎2x2+3(kx+m)2=6,即(2+3k2)x2+6kmx+3m2﹣6=0.‎ ‎△>0,即3k2+2>m2,,‎ ‎|PQ|==.‎ 设O到l的距离为d,‎ 则d=,.‎ 化为9k4+12k2+4﹣12m2k2﹣8m2+4m4=0.‎ 得到(3k2+2﹣2m2)2=0,则3k2+2=2m2,满足△>0.‎ 由前知,,‎ 设M是ON与PQ的交点,则 ‎,‎ ‎,‎ ‎,当且仅当,即m=时等号成立.‎ 综上可知,|OM|•|PQ|的最大值为,|ON|•|PQ|=2|OM|•|PQ|的最大值为5.‎ ‎20.(Ⅰ)以为原点,所在直线分别为轴,轴,轴 建立如图所示的空间直角坐标系, 则,,,, ‎ ‎,. , 又因为 所以,平面. (Ⅱ)设为平面的一个法向量. 由,, 得取,则. 又 设与平面所成的角为, 则, 即与平面所成的角的的正弦值. (Ⅲ)由(Ⅱ)知平面的一个法向量为 设为平面的一个法向量, 由,,, 得取,则. 设与所成角为,则, 所以二面角的正弦值为. ‎ ‎ ‎ ‎21.(Ⅰ)设动点M的坐标为(x,y),‎ 由题意得,,‎ 化简得y2=4x,‎ 所以点M的轨迹C的方程为y2=4x.‎ ‎(Ⅱ)设A,B两点坐标分别为(x1,y1),(x2,y2),‎ 则点P的坐标为.‎ 由题意可设直线l1的方程为y=k(x﹣1)(k≠0),‎ 由得k2x2﹣(2k2+4)x+k2=0.‎ ‎△=(2k2+4)2﹣4k4=16k2+16>0.‎ 因为直线l1与曲线C于A,B两点,‎ 所以x1+x2=2+,‎ y1+y2=k(x1+x2﹣2)=.‎ 所以点P的坐标为.‎ 由题知,直线l2的斜率为,同理可得点的坐标为(1+2k2,﹣2k).‎ 当k≠±1时,有,‎ 此时直线PQ的斜率kPQ=.‎ 所以,直线PQ的方程为,‎ 整理得yk2+(x﹣3)k﹣y=0.‎ 于是,直线PQ恒过定点E(3,0);‎ 当k=±1时,直线PQ的方程为x=3,也过点E(3,0).‎ 综上所述,直线PQ恒过定点E(3,0).‎ ‎(Ⅲ)可求得|EF|=2,‎ 所以△FPQ面积.‎ 当且仅当k=±1时,“=”成立,所以△FPQ面积的最小值为4.‎ ‎22.(1)如图圆E经过椭圆C的左右焦点F1,F2,‎ ‎∴c2+(0﹣)2=,解得c=,‎ ‎∵F1,E,A三点共线,∴F1A为圆E的直径,则|AF1|=3,‎ ‎∴AF2⊥F1F2,∴ =﹣=9﹣8=1,‎ ‎∵2a=|AF1|+|AF2|=3+1=4,∴a=2‎ 由a2=b2+c2得,b=,‎ ‎∴椭圆C的方程是;‎ ‎(2)由(1)得点A的坐标(,1),‎ ‎∵(λ≠0),∴直线l的斜率为kOA=,‎ 则设直线l的方程为y=x+m,设M(x1,y1),N(x2,y2),‎ 由得,,‎ ‎∴x1+x2=,x1x2=m2﹣2,‎ 且△=2m2﹣4m2+8>0,解得﹣2<m<2,‎ ‎∴|MN|=|x2﹣x1|=‎ ‎==,‎ ‎∵点A到直线l的距离d==,‎ ‎∴△AMN的面积S==‎ ‎=≤=,‎ 当且仅当4﹣m2=m2,即m=,直线l的方程为.‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料