一.选择题
1.(2016·河南洛阳高三质检)在倾角为θ的光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量均为m,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。现用一恒力F沿斜面方向拉物块A使之向上运动,当物块B刚要离开C时,A的速度为v,则此过程(弹簧的弹性势能与弹簧的伸长量或压缩量的平方成正比,重力加速度为g)( )
A.物块A运动的距离为
B.物块A加速度为
C.拉力F做的功为mv2
D.拉力F对A做的功等于A的机械能的增加量
【参考答案】.AD
2.(2016·辽宁师大附中一模)如图所示,一轻质弹簧竖立于地面上,质量为m的小球,自弹簧正上方h高处由静止释放,则从小球接触弹簧到将弹簧压缩至最短(弹簧的形变始终在弹性限度内)的过程中,下列说法正确的是( )
A.小球的机械能守恒
B.重力对小球做正功,小球的重力势能减小
C.由于弹簧的弹力对小球做负功,所以小球的动能一直减小
D.小球的加速度先增大后减小
【参考答案】.B
3.(2015·天津理综,5)如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( )
A.圆环的机械能守恒
B.弹簧弹性势能变化了mgL
C.圆环下滑到最大距离时,所受合力为零
D.圆环重力势能与弹簧弹性势能之和保持不变
【参考答案】.B
【名师解析】圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减
少,而圆环与弹簧组成的系统机械能守恒,故A、D错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C错误;圆环重力势能减少了mgl,由能量守恒定律知弹簧弹性势能增加了mgl,故B正确。
4.(2015·江苏单科,9)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长。圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h。圆环在C处获得一竖直向上的速度v,恰好能回到A。弹簧始终在弹性限度内,重力加速度为g。则圆环( )
A.下滑过程中,加速度一直减小
B.下滑过程中,克服摩擦力做的功为mv2
C.在C处,弹簧的弹性势能为mv2-mgh
D.上滑经过B的速度大于下滑经过B的速度
【参考答案】.BD
二.计算题
1.(2016·湖北仙桃高三一检)(20分)轻质弹簧上端固定,下端连接质量m=3 kg的物块A,物块A放在平台B上,通过平台B可以控制A的运动,如图所示,初始时A、B静止,弹簧处于原长。已知弹簧的劲度系数k=200 N/m,g=10 m/s2。(计算结果保留两位有效数字)
(1)若平台B缓慢向下运动,求A、B一起竖直下降的最大位移x1。
(2)若平台B以a=5 m/s2向下匀加速运动,求A、B一起匀加速运动的时间t及此过程中B对A做的功W。
【名师解析】
A、B分离时物块A的速度v=
对A由动能定理有,
W+mgx2+W弹=mv2
代入数据得,W=-0.56 J
答案 (1)0.15 m (2)0.17 s -0.56 J
2.(2016·福建泉州一模)(20分)如图是检验某种平板承受冲击能力的装置,MN为半径R=0.8 m、固定于竖直平面内的光滑圆弧轨道,轨道上端切线水平,O为圆心,OP为待检验平板,M、O、P三点在同一水平线上,M的下端与轨道相切处放置竖直向上的弹簧枪,可发射速度不同但质量均为m=0.01 kg的小钢珠,小钢珠每次都在M点离开弹簧枪。某次发射的小钢珠沿轨道经过N点时恰好与轨道无作用力,水平飞出后落到OP上的Q点,不计空气阻
力,取g=10 m/s2。求:
(1)小钢珠经过N点时速度的大小vN;
(2)小钢珠离开弹簧枪时的动能Ek;
(3)小钢珠在平板上的落点Q与圆心O点的距离s。
【名师解析】
答案 (1)2 m/s (2)0.12 J (3)0.8 m
3.(2016·江苏连云港高三统考)(20分)如图所示,在某竖直平面内,光滑曲面AB与水平面BC平滑连接于B点, BC右端连接内壁光滑、半径r=0.2 m的四分之一细圆管CD,管口D端正下方直立一根劲度系数为k=100 N/m的轻弹簧,弹簧一端固定,另一端恰好与管口D端平齐。一个质量为1 kg的小球放在曲面AB上,现从距BC的高度为h=0.6 m处静止释放小球,它与BC间的动摩擦因数μ=0.5,小球进入管口C端时,它对上管壁有FN=2.5mg的相互作用力,通过CD后,在压缩弹簧过程中滑块速度最大时弹簧的弹性势能为Ep=0.5 J。取重力加速度g=10 m/s2。求:
(1)小球在C处受到的向心力大小;
(2)在压缩弹簧过程中小球的最大动能Ekm;
(3)小球最终停止的位置。
【名师解析】
(3)在C点,由F向=
代入数据得:vC= m/s
滑块从A点运动到C点过程,由动能定理得mg·h-μmgs=mv
解得BC间距离s=0.5 m
小球与弹簧作用后返回C处动能不变,小滑块的动能最终消耗在与BC水平面相互作用的过程中。
设物块在BC上的运动路程为s′,由动能定理有0-mv-μmgs′
解得s′=0.7 m
故最终小滑块与B端的距离为s′-s=0.2 m
答案 (1)35 N (2)6 J (3)距离B端0.2 m(或距离C端0.3 m)
4.(20分)(2016浙江宁波十校联考)如图所示,是一儿童游戏机的简化示意图。光滑游戏面板与水平面成一夹角θ,半径为R的四分之一圆弧轨道BC与长度为8R的AB直管道相切于B点,C点为圆弧轨道最高点(切线水平),管道底端A位于斜面底端,轻弹簧下端固定在AB管道的底端,上端系一轻绳,绳通过弹簧内部连一手柄P。经过观察发现:轻弹簧无弹珠时,其上端离B点距离为5R,将一质量为m的弹珠Q投入AB管内,设法使其自由静止,测得此时弹簧弹性势能,已知弹簧劲度系数。某次缓慢下拉手柄P使弹簧压缩,后释放手柄,弹珠Q经C点被射出,弹珠最后击中斜面底边上的某位
置(图中未标出),根据击中位置的情况可以获得不同的奖励。假设所有轨道均光滑,忽略空气阻力,弹珠可视为质点。直管AB粗细不计。求:
(1)调整手柄P的下拉距离,可以使弹珠Q经BC轨道上的C点射出,落在斜面底边上的不同位置,其中与A的最近距离是多少?
(2)若弹珠Q落在斜面底边上离A的距离为10R,求它在这次运动中经过C点时对轨道的压力为多大?
(3)在(2)的运动过程中,弹珠Q离开弹簧前的最大速度是多少?
【名师解析】
(2)设击中P1点的弹珠在经过C点时的速度为Vc,离开C点后弹珠做类平抛运动:
a=gsinθ………………………………………………1分
10R—R=……………………………………………………………………1分
又在(1)中得到:
………………………………………………………………1分
经C点时:………………………………………………2分
所以,………………………………………………………………1分
根据牛顿第三定律:弹珠Q对C点的压力N与FN大小相等方向相反
所以,弹珠Q对C点的压力N=……………………………………2分
(3)弹珠离开弹簧前,在平衡位置时,速度最大.
设此时弹簧压缩量为,根据平衡条件:mgsin 则:………2分
取弹珠从平衡位置到C点的运动过程为研究过程,根据系统机械能守恒:取平衡位置重力势能为零
……………………………………。2分
…………………………………………………………………2分