密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
太原五中2018-2019学年度第一学期阶段性检测
高 二 数 学(理)
出题人、校对人:刘锦屏、李廷秀、闫晓婷(2018.10)
一、选择题(每小题4分,共40分,每小题只有一个正确答案)
1.已知是两条平行直线,且平面,则与的位置关系是( )
A.平行 B.相交 C.在平面内 D.平行或在平面内
2.若某多面体的三视图(单位:)如图所示,且此多面体的体积,则( )
A. B. C. D.
x,’
O’
y’
C’
B’
A’
3.如图,一个水平放置的平面图形的斜二测直观图为直角梯形,且,平行于轴,则这个平面图形的面积为( )
A. B. C. D.
4.已知圆柱的高等于,侧面积等于,则这个圆柱的体积等于( )
A. B. C. D.
5.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
6.如图,长方体中,,为上一点,则异面直线与所成角的大小是( )
A. B.
C. D.随点的移动而变化
7.如图,在正方体中,分别是的中点,则下列说法错误的是( )
A. B.平面
C. D.平面
8.在正方体中,直线与平面所成角的正弦值为( )
A. B. C. D.
9.已知四棱锥的顶点都在球的球面上,底面是边长为的正方形,且面,四棱锥的体积为,则该球的体积为( )
A. B. C. D.
10. 在长方体中,分别在线段和上,,则三棱锥体积的最小值为( )
A. B. C. D.
二、填空题(每小题4分,共20分)
11.分别在两个平行平面内的两条直线的位置关系是 .
12.某几何体的三视图如图所示,其中正视图和侧视图都是
边长为的正方形,则该几何体的表面积为 .
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
13.已知圆锥的表面积是,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 .
14. 如图所示,在正方体中,分别是棱的中点,是的中点,点在四边形及其内部运动,则满足 时,有平面.
15.如图,在直四棱柱中,底面是正方形,.记异面直线与所成的角为,则 .
三、 解答题(每小题10分,共40分)
16.如图,在三棱柱中,侧棱垂直于底面,, 为的中点,过的平面与交于点.
(1)求证:点为的中点;
(2)四边形是什么平面图形?说明理由,并求其面积.
A
B
C
D
E
F
A’
B
F
D
E
17.如图,边长为4的正方形中:
(1)点是的中点,点是的中点,将分别沿折起,使两点重合于点.求证:;
(2)当时,求三棱锥的体积.
B1
A1
M
C
B
A
C1
18.如图,在直三棱柱中,,,是的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
19.在四棱锥中,底面为正方形,.
(1)证明:面⊥面;
(2)若与底面所成的角为, ,求二面角的余弦值.
一、选择题(每小题4分,共40分)高二数学(理)
1.已知是两条平行直线,且平面,则与的位置关系是( )
A.平行 B.相交
C.在平面内 D.平行或在平面内
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
解析:因为是两条平行直线,且平面,所以与的位置关系是或在平面内,故选:D.
2.若某多面体的三视图(单位:)如图所示,且此多面体的体积,则( )
A. B. C. D.
解析:由三视图可知,几何体为三棱锥,高为,底边长为,底面高为,
顶点在底面上的射影是等腰三角形的顶点,所以,
解得.故选:A.
3.如图,一个水平放置的平面图形的斜二测直观图为直角梯形,且,平行于轴,则这个平面图形的面积为( )
A. B. C. D.
解析:根据斜二测画法的规则可知:
水平放置的图形为一直角梯形,由题意可知上底为,高为,
下底为,∴该图形的面积为.故选:B.
4.已知圆柱的高等于,侧面积等于,则这个圆柱的体积等于( )
A. B. C. D.
解析:圆柱的高等于,侧面积等于,可得,可得,
所以圆柱的体积为:.故选:D.
5.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
解析:对于A,若,显然结论错误,故A错误;
对于B,若,则或异面,故B错误;
对于C,若,则
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
,根据面面垂直的判定定理进行判定,故C正确;
对于D,若,则位置关系不能确定,故D错误.故选:C.
6.如图,长方体中,,为上一点,则异面直线与所成角的大小是( )
A. B. C. D.随点的移动而变化
解析:∵面,∴为在面内的射影,又,∴,∴,异面直线与所成角的大小是.所以故选C.
7.如图,在正方体中,分别是的中点,则下列说法错误的是( )
A. B.平面
C. D.平面
解析:∵在正方体中,分别是的中点,
∴以为原点,为轴,为轴,为轴,,建立空间直角坐标系,
设正方体中,棱长为,
则,
,故A正确;
,
又,平面,故B成立;
,∴和不平行,故C错误;
平面的法向量,
又平面,平面,故D正确.故选:C.
8.在正方体中,直线与平面所成角的正弦值为
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
A. B. C. D.
解析:如图所示:
连接交于点,连接,在正方体中,∵AB⊥平面AD1,∴AB⊥A1D,
又A1D⊥AD1,且AD1∩AB=A,∴A1D⊥平面AD1C1B,所以∠A1C1O即为所求角,
在Rt△A1C1O中,,所以A1C1与平面ABC1D1所成角的正弦值为,
故选D.
9.已知四棱锥的顶点都在球的球面上,底面是边长为的正方形,且面,四棱锥的体积为,则该球的体积为( )
A. B. C. D.
解析:四棱锥扩展为长方体,则长方体的对角线的长是外接球的直径,
由四棱锥的体积为,解得;,解得;
∴外接球的体积为.故选:B.
10. 在长方体中,分别在线段和上,,则三棱锥的体积最小值为( )
A. B. C. D.
解析:如图
∵D到平面MC1N的距离为定值,
△MC1N的一边长MN=2,,
∴要使三棱锥D﹣MNC1的体积最小,则C1 到直线MN的距离最小,此时MN在AC 或AA1上,C1 到直线MN的距离为5,
则三棱锥D﹣MNC1的体积最小值为V=.故选:A.
二、填空题(每小题4分,共20分)
11.分别在两个平行平面内的两条直线的位置关系是 .
解析:分别在两个平行平面内的两条直线的位置关系是可以平行,可以异面,但不能相交,
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
∴分别在两个平行平面内的两条直线的位置关系是平行或异面.故答案为:平行或异面.
12.某几何体的三视图如图所示,其中正视图和侧视图都是边长为的正方形,则该几何体的表面积为 .
解析:如图所示,该几何体是一个直三棱柱,是以俯视图为底面是三棱柱,棱柱的底面是等腰直角三角形,腰长为,棱柱的高为,其左侧面与底侧面都是边长为的正方形且相互垂直,其三棱柱的表面积,答案为:.
13.已知圆锥的表面积是,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 .
解析:设圆锥的底面半径为,母线为,因为圆锥的表面积是,所以,又因为圆锥的侧面展开图是一个半圆,所以,代入①可得,所以圆锥的底面直径为 .
14. 如图所示,在正方体中,分别是棱的中点,是的中点,点在四边形及其内部运动,则满足 时,有平面.
解析:∵HN∥DB,FH∥D1D,∴面FHN∥面B1BDD1.
∵点M在四边形EFGH上及其内部运动,
故M∈FH.故答案为:M在线段FH上.
15.如图,在直四棱柱中,底面是正方形,.记异面直线与所成的角为,则
解:方法一:∵在直四棱柱中,底面是正方形,
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
.
,是异面直线与所成的角(或所成的角的补角),
设,
记异面直线与所成的角为,则 ,故答案为:.
方法二:向量法.
三、解答题(每小题10分,共40分)
16.如图,在三棱柱中,侧棱垂直于底面,, 为的中点,过的平面与交于点.
(1)求证:点为的中点;
(2)四边形是什么平面图形?说明理由,并求其面积.
解析:(1)证明:三棱柱中,,平面,
平面,平面,又平面,
平面平面,,
又为的中点,∴点为的中点;
(2)四边形是直角梯形,理由为:
由(1)知,,且,∴四边形是梯形;
又侧棱B1B⊥底面ABC,∴B1B⊥AB;又AB=6,BC=8,AC=10,
∴AB2+BC2=AC2,∴AB⊥BC,又B1B∩BC=B,∴AB⊥平面B1BCC1;
又BF⊂平面B1BCC1,∴AB⊥BF;∴梯形ABFE是直角梯形;
由BB1=3,B1F=4,∴BF=5;又EF=3,AB=6,
∴直角梯形ABFE的面积为S=×(3+6)×5=.
17.如图,边长为的正方形中:
(1)点是的中点,点是的中点,将分别沿折起,使两点重合于点.求证:;
A
B
C
D
E
F
A’
B
F
D
E
(2)当时,求三棱锥的体积.
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
解析:(1)证明:由正方形可知:,
平面,.
(2)正方形边长为4,故折叠后,
故的面积,由(1)知,可得三棱锥的体积.
B1
A1
M
C
B
A
C1
18.如图,在直三棱柱中,,,是的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
解析:(1)证明:连接交于,连接.在三角形中,
是三角形的中位线,
所以∥,
又因平面,
所以∥平面.
(2)方法一:设直线与平面所成角为,
点到平面的距离为,不妨设,则,
因为,,
所以.
因为,
所以,.
.
,
,.
方法二:如图以所在的直线为轴, 以所在的直线为轴, 以所在的直线为轴,以的长度为单位长度建立空间直角坐标系.
x
y
z
A
B
C
A1
B1
C1
M
则,,,,,,.设直线与平面所成角为,平面的法向量为.则有
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
,,,
令,得,
设直线与平面所成角为,
则.
19.在四棱锥中,底面为正方形,.
(1)证明:面⊥面;
(2)若与底面所成的角为3,,求二面角的余弦值.
解析:(1)证明:连接AC,BD交点为O,
∵四边形ABCD为正方形,∴AC⊥BD,
∵PB=PD,OB=OD,∴BD⊥OP,
又∵OP∩AC=O,∴BD⊥面PAC,
又BD⊂面PAC,∴面PAC⊥面ABCD.…(4分)
(2)方法一:∵面PAC⊥面ABCD,过点P作PE⊥AC,垂足为E,
∴PE⊥面ABCD,
∵PA与底面ABCD所成的角为30°,∴∠PAC=30°,
又PA⊥PC,设PC=2,
则AP=2,PE=,AE=3,AC=4,AD=2,…(6分)
如图所示,以A为坐标原点,AB为x轴,AD为y轴,过A作平面ABCD的垂线为z轴,
建立空间直角坐标系A﹣xyz,
则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(,,),
设面PBC法向量为=(x,y,z),=(0,2,0),=(﹣,﹣,),
则,令z=1,则=(),
同理面PCD的法向量=(0,,1),…(10分)
cos<>===.
由图知二面角B﹣PC﹣D的平面角是钝角,
∴二面角B﹣PC﹣D的余弦值为﹣.…(12分)
方法二:∵面PAC⊥面ABCD,过点P作PE⊥AC,垂足为E,
∴PE⊥面ABCD,
∵PA与底面ABCD所成的角为30°,∴∠PAC=30°,又PA⊥PC,设PC=2,
则AP=2,PE=,AE=3,AC=4,AD=2,
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页
密 封 线
学校 班级 姓名 学号
密 封 线 内 不 得 答 题
在三角形BEC中,∠BCE=45°,由余弦定理可得,解得,
在直角三角形PBE中:,
同理:在三角形DEC中,∠DCE=45°,由余弦定理可得,解得,在直角三角形PDE中:,
都是等腰三角形,设点是中点,则为二面角的平面角,易知,
∴二面角B﹣PC﹣D的余弦值为﹣.
高二数学(理) 第17页,共20页 高二数学(理) 第18页,共20页