2018年广东省广州市从化市中考数学模拟试卷(4月份)
一.选择题(共10小题,满分30分)
1.在0.3,﹣3,0,﹣这四个数中,最大的是( )
A.0.3 B.﹣3 C.0 D.﹣
2.如图所示的几何体的主视图是( )
A. B. C. D.
3.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )
A.8×1014元 B.0.8×1014元 C.80×1012元 D.8×1013元
4.下列运算正确的是( )
A.(x3) 4=x7 B.(x﹣2)2=x2﹣4
C.2x2•x3=2x5 D.x2+x3=x5
5.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为( )
A.1 B.﹣1 C.1或﹣1 D.
6.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )
A.8 B.10 C.21 D.22
7.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是( )
A. B. C. D.
8.下列关于一次函数y=﹣2x+3的结论中,正确的是( )
A.图象经过点(3,0)
B.图象经过第二、三、四象限
C.y随x增大而增大
D.当x>时,y<0
9.在平面直角坐标系中,经过点(4sin45°,2cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是( )
A.相交 B.相切
C.相离 D.以上三者都有可能
10.如图所示,是反比例函数y=与y=在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于A点和B点,若点P在x轴上运动,则△ABP的面积等于( )
A.5 B.4 C.10 D.20
二.填空题(共6小题,满分18分,每小题3分)
11.若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为 .
12.因式分解:mn(n﹣m)﹣n(m﹣n)= .
13.方程的解为x= .
14.若x,y为实数,y=,则4y﹣3x的平方根是 .
15.如图,Rt△ABC中,∠ACB=90°,AC=,BC=1,将Rt△ABC绕C点旋转90°后为Rt△A′B′C′,再将Rt△A′B′C′绕B点旋转为Rt△A″B″C″使得A、C、B′、A″在同一直线上,则A点运动到A″点所走的长度为 .
16.若正方形的面积是9,则它的对角线长是 .
三.解答题(共9小题,满分88分)
17.(9分)解不等式组:,并把解集在数轴上表示出来.
18.(9分)如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.
(1)求证:△AEB≌△CFD;
(2)若四边形EBFD是菱形,求∠ABD的度数.
19.(10分)(1)化简:m+n﹣;
(2)若m,n是方程x2﹣3x+2=0的两个实根,求第(1)小题中代数式的值.
20.(10分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:
(1)a= ,b= ,c= ;
(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为 度;
(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
21.(12分)如图,在△ABC中,AB=AC=8,BC=12,用尺规作图作△ABC的BC边上的△中线AD,并求线段AD的长(保留作图痕迹,不要求写作法和证明)
22.(12分)某景点的门票价格,成人票每张是12元,儿童票每张是8元,
(1)若小明买了20张该景点的门票,共花了216元.根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:
小莉:小刚:根据两名同学所列的方程组,请你分别写出未知数x、y表示的实际意义.
小莉:x表示 ,y表示 ;小刚:x表示 ,y表示 ;
(2)某旅游团计划购买30张该景点的门票,购买费用不超过320元,求成人票最多购买多少张?
23.(12分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
24.(14分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
25.已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.
(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.
参考答案与试题解析
一.选择题(共10小题,满分24分)
1.【解答】解:∵﹣3<﹣<0<0.3
∴最大为0.3
故选:A.
2.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,
故选:B.
3.【解答】解:80000000000000元=8×1013元,
故选:D.
4.【解答】解:A、结果是x12,故本选项不符合题意;
B、结果是x2﹣4x+4,故本选项不符合题意;
C、结果是2x5,故本选项符合题意;
D、x2和x3不是同类项,不能合并,故本选项不符合题意;
故选:C.
5.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,
解得:a=﹣1.
故选:B.
6.【解答】解:∵共有4+10+8+6+2=30个数据,
∴中位数为第15、16个数据的平均数,即中位数为=22,
故选:D.
7.【解答】解:由题意得,OC=2,AC=4,
由勾股定理得,AO==2,
∴sinA==,
故选:A.
8.【解答】解:A、图象经过点(,0),故原题说法错误;
B、图象经过第二、一、四象限,故原题说法错误;
C、y随x增大而减小,故原题说法错误;
D、当x>时,y<0,故原题说法正确;
故选:D.
9.【解答】解:设直线经过的点为A,
∵点A的坐标为(4sin45°,2cos30°),
∴OA=,
∵圆的半径为2,
∴OA>2,
∴点A在圆外,
∴直线和圆相交,相切、相离都有可能,
故选:D.
10.【解答】解:设点A(a,)
∵AB∥x轴
∴点B纵坐标为,且点B在反比例函数y=图象上,
∴点B坐标(﹣,)
∴S△ABP=(a+)×=5
故选:A.
二.填空题(共6小题,满分18分,每小题3分)
11.【解答】解:∵∠2的邻补角是∠3,∠3=45°,
∴∠2=180°﹣∠3=135°.
∵∠1的对顶角是∠2,
∴∠1=∠2=135°.
12.【解答】解:mn(n﹣m)﹣n(m﹣n),
=mn(n﹣m)+n(n﹣m),
=n(n﹣m)(m+1).
故答案为:n(n﹣m)(m+1).
13.【解答】解:方程两边同乘x(x﹣3),得
2x=3(x﹣3),
解得x=9.
经检验x=9是原方程的解.
14.【解答】解:∵与同时成立,
∴故只有x2﹣4=0,即x=±2,
又∵x﹣2≠0,
∴x=﹣2,y==﹣,
4y﹣3x=﹣1﹣(﹣6)=5,
故4y﹣3x的平方根是±.
故答案:±.
15.【解答】解:第一次是以点C为圆心,AC为半径,旋转的度数是90度,
第二次是以点B′为圆心,AB为半径,旋转的度数是180°﹣60°=120°;
所以根据弧长公式可得:
=.
16.【解答】解:若正方形的面积是9,则它的边长是3,根据勾股定理得到则它的对角线长===3.
故答案为3
三.解答题(共9小题,满分88分)
17.【解答】解:解不等式x﹣1≤2﹣2x,得:x≤1,
解不等式>,得:x>﹣3,
将解集表示在数轴上如下:
则不等式组的解集为﹣3<x≤1.
18.【解答】(1)证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AD=BC,AB=CD.
∵点E、F分别是AD、BC的中点,
∴AE=AD,FC=BC.
∴AE=CF.
在△AEB与△CFD中,
,
∴△AEB≌△CFD(SAS).
(2)解:∵四边形EBFD是菱形,
∴BE=DE.
∴∠EBD=∠EDB.
∵AE=DE,
∴BE=AE.
∴∠A=∠ABE.
∵∠EBD+∠EDB+∠A+∠ABE=180°,
∴∠ABD=∠ABE+∠EBD=×180°=90°.
19.【解答】解:(1)m+n﹣=;
(2)∵m+n=3,m•n=2
∴m+n﹣==.
20.【解答】解:(1)本次调查的总人数为12÷30%=40人,
∴a=40×5%=2,b=×100=45,c=×100=20,
故答案为:2、45、20;
(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,
故答案为:72;
(3)画树状图,如图所示:
共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,
故P(选中的两名同学恰好是甲、乙)==.
21.【解答】解:如图,AD为所作;
∵AB=AC=8,AD为中线,
∴AD⊥BC,BD=CD=BC=6,
在Rt△ABD中,AD==2.
22.【解答】解:(1)小莉:x表示成人票的张数;y表示儿童票的张数;小刚:x表示买成人票一共花的钱数;y表示买儿童票一共花的钱数;
故答案为:成人票的张数;儿童票的张数;买成人票一共花的钱数;买儿童票一共花的钱数;
(2)设成人票购买了m张,则儿童票为(30﹣m)张,
根据题意得:12m+8(30﹣m)≤320,
解得:m≤20,
则成人票最多购买20张.
23.【解答】解:(1)设反比例函数解析式为y=,
把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,
∴反比例函数解析式为y=;
把A(3,m)代入y=,可得3m=6,
即m=2,
∴A(3,2),
设直线AB 的解析式为y=ax+b,
把A(3,2),B(﹣2,﹣3)代入,可得,
解得,
∴直线AB 的解析式为y=x﹣1;
(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;
(3)存在点C.
如图所示,延长AO交双曲线于点C1,
∵点A与点C1关于原点对称,
∴AO=C1O,
∴△OBC1的面积等于△OAB的面积,
此时,点C1的坐标为(﹣3,﹣2);
如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,
∴△OBC2的面积等于△OAB的面积,
由B(﹣2,﹣3)可得OB的解析式为y=x,
可设直线C1C2的解析式为y=x+b',
把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',
解得b'=,
∴直线C1C2的解析式为y=x+,
解方程组,可得C2(,);
如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,
设直线AC3的解析式为y=x+b“,
把A(3,2)代入,可得2=×3+b“,
解得b“=﹣,
∴直线AC3的解析式为y=x﹣,
解方程组,可得C3(﹣,﹣);
综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).
24.【解答】解:(1)将A、C两点坐标代入抛物线,得
,
解得:,
∴抛物线的解析式为y=﹣x2+x+8;
(2)①∵OA=8,OC=6,
∴AC==10,
过点Q作QE⊥BC与E点,则sin∠ACB===,
∴=,
∴QE=(10﹣m),
∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
∴当m=5时,S取最大值;
在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
D的坐标为(3,8),Q(3,4),
当∠FDQ=90°时,F1(,8),
当∠FQD=90°时,则F2(,4),
当∠DFQ=90°时,设F(,n),
则FD2+FQ2=DQ2,
即+(8﹣n)2++(n﹣4)2=16,
解得:n=6±,
∴F3(,6+),F4(,6﹣),
满足条件的点F共有四个,坐标分别为
F1(,8),F2(,4),F3(,6+),F4(,6﹣).
25.【解答】解:(1)如图1,∵AC是⊙O的直径,
∴∠ABC=90°,
∵DE⊥AB,
∴∠DEA=90°,
∴∠DEA=∠ABC,
∴BC∥DF,]
∴∠F=∠PBC,
∵四边形BCDF是圆内接四边形,
∴∠F+∠DCB=180°,
∵∠PCB+∠DCB=180°,
∴∠F=∠PCB,
∴∠PBC=∠PCB,
∴PC=PB;
(2)如图2,连接OD,∵AC是⊙O的直径,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥DC,
∵BC∥DE,
∴四边形DHBC是平行四边形,
∴BC=DH=1,
在Rt△ABC中,AB=,tan∠ACB=,
∴∠ACB=60°,
∴BC=AC=OD,
∴DH=OD,
在等腰三角形DOH中,∠DOH=∠OHD=80°,
∴∠ODH=20°,
设DE交AC于N,
∵BC∥DE,
∴∠ONH=∠ACB=60°,
∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,
∴∠DOC=∠DOH﹣∠NOH=40°,
∵OA=OD,∴∠OAD=∠DOC=20°,
∴∠CBD=∠OAD=20°,
∵BC∥DE,
∴∠BDE=∠CBD=20°.