广东省汕头市潮南区2018-2019学年九年级(上)
期末数学模拟试卷(一)
一.选择题(共10小题,满分30分)
1.方程﹣5x2=1的一次项系数是( )
A.3 B.1 C.﹣1 D.0
2.在下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
3.点M(1,2)关于y轴对称点的坐标为( )
A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
4.方程2x2﹣2=0的根是( )
A.x1=x2=1 B.x1=x2=﹣1 C.x1=1,x2=﹣1 D.x1=2,x2=﹣2
5.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是( )
A.有最大值 2,有最小值﹣2.5
B.有最大值 2,有最小值 1.5
C.有最大值 1.5,有最小值﹣2.5
D.有最大值 2,无最小值
6.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )
A. B. C. D.
7.如图,AB是⊙O的直径,点C、D在⊙O上,∠BOD=110°,AC∥OD,则∠AOC的度数( )
A.70° B.60° C.50° D.40°
8.下列四个命题中,真命题有( )
①两条直线被第三条直线所截,内错角相等.
②如果∠1和∠2是对顶角,那么∠1=∠2.
③三角形的一个外角大于任何一个内角.
④如果x2>0,那么x>0.
A.1个 B.2个 C.3个 D.4个
9.如图,直角三角形ABC有一外接圆,其中∠B=90°,AB>BC,今欲在上找一点P,使得=,以下是甲、乙两人的作法:
甲:(1)取AB中点D
(2)过D作直线AC的平行线,交于P,则P即为所求
乙:(1)取AC中点E
(2)过E作直线AB的平行线,交于P,则P即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A.两人皆正确 B.两人皆错误
C.甲正确,乙错误C D.甲错误,乙正确
10.在半径为12cm的圆中,长为4πcm的弧所对的圆心角的度数为( )
A.10° B.60° C.90° D.120°
二.填空题(共6小题,满分24分,每小题4分)
11.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=10.若(x+1)※(x﹣2)=6,则x的值为 .
12.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是 ,第(2018)个三角形的直角顶点的坐标是 .
13.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .
14.如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为 .
15.如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O于D,E两点,过点D作直径DF,连结AF,则∠DFA= .
16.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为 .
三.解答题(共3小题,满分18分,每小题6分)
17.(6分)已知x=1是关于x的方程x2﹣mx﹣2m2=0的一个根,求m(2m+1)的值.
18.(6分)已知:△ABC(如图),
(1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明).
(2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.
19.(6分)如图,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.
四.解答题(共3小题,满分21分,每小题7分)
20.(7分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
21.(7分)物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.
(1)求二、三这两个月的月平均增长率;
(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?
22.(7分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.
(1)试判断∠AED与∠C的数量关系,并说明理由;
(2)若AD=3,∠C=60°,点E是半圆AB的中点,则线段AE的长为 .
五.解答题(共3小题,满分27分,每小题9分)
23.(9分)已知关于x的一元二次方程(x﹣3)(x﹣2)=m2
(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.
24.(9分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.
(1)求证:AC是⊙O的切线;
(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)
25.(9分)如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C.A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q,设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P顺时针旋转90°,是否存t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.
参考答案
一.选择题
1.解:方程整理得:﹣5x2﹣1=0,
则一次项系数为0,
故选:D.
2.解:A、不是轴对称图形,是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,也不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选:D.
3.解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).
故选:A.
4.解:方程整理得:x2=1,
开方得:x=±1,
则x1=1,x2=﹣1.
故选:C.
5.解:∵二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,
∴x=1时,有最大值 2,x=4时,有最小值﹣2.5.
故选:A.
6.解:画树状图如下:
由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,
∴两人“心领神会”的概率是=,
故选:B.
7.解:连接BC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠BOD=110°,
∴∠AOD=180°﹣110°=70°,
∵AC∥OD,
∴∠CAB=∠AOD=70°,
∵△ABC是直角三角形,
∴∠ABC=90°﹣∠AOC=90°﹣70°=20°,
∴∠AOC=2∠ABC=2×20°=40°.
故选:D.
8.解:两条平行直线被第三条直线所截,内错角相等,所以①错误;
如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;
三角形的一个外角大于任何一个不相邻的内角,所以③错误;
如果x2>0,那么x≠0,所以④错误.
故选:A.
9.解:(1)由甲的作法可知,DP是△ABC的中位线,
∵DP不垂直于BC,
∴≠;
(2)由乙的作法,连BE,可知△BEC为等腰三角形
∵直线PE⊥BC,
∴∠1=∠2
故=;
∴甲错误,乙正确.
故选:D.
10.解:根据弧长的公式l=,
得到:4π=,
解得n=60°,
故选:B.
二.填空题(共6小题,满分24分,每小题4分)
11.解:由题意得,(x+1)2﹣(x+1)(x﹣2)=6,
整理得,3x+3=6,
解得,x=1,
故答案为:1.
12.解:∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(2)个三角形的直角顶点的坐标是(4,);
∵5÷3=1余2,
∴第(5)个三角形的直角顶点的坐标是(,),
∵2018÷3=672余2,
∴第(2018)个三角形是第672组的第二个直角三角形,
其直角顶点与第672组的第二个直角三角形顶点重合,
∴第(2018)个三角形的直角顶点的坐标是(8068,).
故答案为:(16,);(8068,)
13.解:根据题意知,掷一次骰子6个可能结果,而奇数有3个,所以掷到上面为奇数的概率为.
故答案为:.
14.解:∵⊙O的直径AB垂直于弦CD,
∴CE=DE,∠CEO=90°,
∵∠A=15°,
∴∠COE=30°,
在Rt△OCE中,OC=2,∠COE=30°,
∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)
∴CD=2CE=2,
故答案为:2
15.解:∵点C是半径OA的中点,
∴OC=OD,
∵DE⊥AB,
∴∠CDO=30°,
∴∠DOA=60°,
∴∠DFA=30°,
故答案为:30°
16.解:依题意得:(1)摆第1个“小屋子”需要5个点;
摆第2个“小屋子”需要11个点;
摆第3个“小屋子”需要17个点.
当n=n时,需要的点数为(6n﹣1)个.
故答案为6n﹣1.
三.解答题(共3小题,满分18分,每小题6分)
17.解:∵x=1是关于x的方程x2﹣mx﹣2m2=0的一个根,
∴1﹣m﹣2m2=0.
∴2m2+m=1.
∴m(2m+1)=2m2+m=1.
18.解:(1)如图,⊙I为所作;
(2)∵⊙I为△ABC的内切圆,
∴BI平分∠ABC,CI平分∠ACB,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠BAC)=(180°﹣88°)=46°,
∴∠BIC=180°﹣∠IBC﹣∠ICB=180°﹣(∠IBC+∠ICB)=180°﹣46°=134°.
19.解:BD存在最大值.
如图:以AD为边作等边△ADE,连接CE.
∵△ABC,△ADE都是等边三角形
∴AB=AC,AD=AE=DE=2,∠BAC=∠EAD=60°.
∵∠BAD=∠BAC+∠DAC,∠EAC=∠EAD+∠DAC
∴∠BAD=∠EAC,且AB=AC,AD=AE
∴△ABD≌△ACE(SAS)
∴BD=CE
若点E,点D,点C不共线时,EC<ED+DC;
若点E,点D,点C共线时,EC=ED+DC.
∴EC≤ED+CD=2+4=6
∴BD≤6
∴BD最大值为6.
四.解答题(共3小题,满分21分,每小题7分)
20.解:(1)∵第一道单选题有3个选项,
∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;
故答案为:;
(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,
画树状图得:
∵共有9种等可能的结果,小明顺利通关的只有1种情况,
∴小明顺利通关的概率为:;
(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;
∴建议小明在第一题使用“求助”.
21.解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:
256(1+x)2=400,
解得:x1=,x2=﹣(不合题意舍去).
答:二、三这两个月的月平均增长率为25%;
(2)设当商品降价m元时,商品获利4250元,根据题意可得:
(40﹣25﹣m)(400+5m)=4250,
解得:m1=5,m2=﹣70(不合题意舍去).
答:当商品降价5元时,商品获利4250元.
22.解:(1)∠AED=∠C,证明如下:
连接BD,
可得∠ADB=90°,
∴∠C+∠DBC=90°,
∵CB是⊙O的切线,
∴∠CBA=90°,
∴∠ABD+∠DBC=90°,
∴∠ABD=∠C,
∵∠AEB=∠ABD,
∴∠AED=∠C,
(2)连接BE,
∴∠AEB=90°,
∵∠C=60°,
∴∠CAB=30°,
在Rt△DAB中,AD=3,∠ADB=90°,
∴cos∠DAB=,
解得:AB=2,
∵E是半圆AB的中点,
∴AE=BE,
∵∠AEB=90°,
∴∠BAE=45°,
在Rt△AEB中,AB=2,∠ADB=90°,
∴cos∠EAB=,
解得:AE=.
故答案为:
五.解答题(共3小题,满分27分,每小题9分)
23.解:(1)∵关于x的一元二次方程(x﹣3)(x﹣2)=m2,
∴x2﹣5x+6﹣m2=0,
∴△=25﹣4(6﹣m2)=1+4m2>0,
∴对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,
则(1﹣3)×(1﹣2)=m2,
2=m2,
m=±,
原方程变形为x2﹣5x+4=0,
设方程的另一个根为a,
则1×a=4,
a=4,
则方程的另一个根为4.
24.(1)证明:连接OD,
∵CD与圆O相切,
∴OD⊥CD,
∴∠CDO=90°,
∵BD∥OC,
∴∠AOC=∠OBD,∠COD=∠ODB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠AOC=∠COD,
在△AOC和△DOC中,,
∴△AOC≌△EOC(SAS),
∴∠CAO=∠CDO=90°,则AC与圆O相切;
(2)∵AB=OC=4,OB=OD,
∴Rt△ODC与Rt△OAC是含30°的直角三角形,
∴∠DOC=∠COA=60°,
∴∠DOB=60°,
∴△BOD为等边三角形,
图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积=.
25.解:(1)解法一:由图象可知:抛物线经过原点,
设抛物线解析式为y=ax2+bx(a≠0).
把A(1,1),B(3,1)代入上式得,
解得,
∴所求抛物线解析式为y=﹣x2+x;
解法二:∵A(1,1),B(3,1),∴抛物线的对称轴是直线x=2.
设抛物线解析式为y=a(x﹣2)2+h(a≠0),
把O(0,0),A(1,1)代入得
解得∴所求抛物线解析式为:y=﹣(x﹣2)2+.
(2)分三种情况:
①当0<t≤2,重叠部分的面积是S△OPQ,过点A作AF⊥x轴于点F,
∵A(1,1),在Rt△OAF中,AF=OF=1,∠AOF=45°,
在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°,
∴PQ=OQ=tcos45°=t,
∴S=(t)2=t2.
②当2<t≤3,设PQ交AB于点G,
作GH⊥x轴于点H,∠OPQ=∠QOP=45°,则四边形OAGP是等腰梯形,
重叠部分的面积是S梯形OAGP.
∴AG=FH=t﹣2,
∴S=(AG+OP)AF=(t+t﹣2)×1=t﹣1.
③当3<t<4,设PQ与AB交于点M,交BC于点N,
重叠部分的面积是S五边形OAMNC.
因为△PNC和△BMN都是等腰直角三角形,
所以重叠部分的面积是S五边形OAMNC=S梯形OABC﹣S△BMN.
∵B(3,1),OP=t,
∴PC=CN=t﹣3,
∴BM=BN=1﹣(t﹣3)=4﹣t,
∴S=(2+3)×1﹣(4﹣t)2 S=﹣t2+4t﹣;
(3)存在t1=1,t2=2.
将△OPQ绕着点P顺时针旋转90°,此时Q(t+,),O(t,t)
①当点Q在抛物线上时, =×(t+)2+×(t+),解得t=2;
②当点O在抛物线上时,t=﹣t2+t,解得t=1.