浙江省宁波市镇海区2018-2019学年九年级(上)期末模拟试卷
一.选择题(共12小题,满分48分)
1.下列事件中,是必然事件的是( )
A.明天太阳从东方升起
B.随意翻到一本书的某页,这页的页码是奇数
C.射击运动员射击一次,命中靶心
D.经过有交通信号灯的路口,遇到红灯
2.若2a=3b,则等于( )
A. B.1 C. D.不能确定
3.对于抛物线y=﹣(x+2)2+3,下列结论中正确结论的个数为( )
①抛物线的开口向下; ②对称轴是直线x=﹣2;
③图象不经过第一象限; ④当x>2时,y随x的增大而减小.
A.4 B.3 C.2 D.1
4.已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是( )
A.0.6 B.0.75 C.0.8 D.
5.一个扇形的圆心角是60°,半径是6cm,那么这个扇形的面积是( )
A.3πcm2 B.πcm2 C.6πcm2 D.9πcm2
6.下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有( )
A.1个 B.2个 C.3个 D.4个
7.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠
B,AD=1,AC=2,△ADC的面积为3,则△BCD的面积为( )
A.12 B.9 C.6 D.3
8.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为( )
A.π B.π C.π D.π
9.从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x2上的概率是( )
A. B. C. D.
10.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为( )
A.4 B.2 C.3 D.2.5
11.如图,已知点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=
∠A,过点C作CE⊥AB于E,CE=8,cosD=,则AC的长为( )
A. B. C.10 D.
12.二次函数y=ax2+bx+c(a≠0),自变量x与函数y的对应值如下表:则下列说法正确的是( )
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
0
…
y
…
4.9
0.06
﹣2
﹣2
0.06
4.9
…
A.抛物线的开口向下
B.当x>﹣3时,y随x的增大而增大
C.二次函数的最大值是6
D.抛物线的对称轴是x=﹣
二.填空题(共6小题,满分24分,每小题4分)
13.抛物线y=的顶点坐标是 .
14.若线段a,b,c,d成比例,其中a=1,b=2,c=3,则d= .
15.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为
16.如图,AB为⊙O的直径,C为⊙O上一点,∠BOC=50°,AD∥OC,AD交⊙O于点D,连接AC,CD,那么∠ACD= .
17.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为 .
18.如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为 .
三.解答题(共8小题,满分64分)
19.(6分)计算:2sin30°﹣tan60°+cos60°﹣tan45°.
20.(8分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;
(2)求摸出的两个小球号码之和等于4的概率.
21.(9分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了两个格点△ABC和△DEF(顶点在网格线的交点上).
(1)平移△ABC,使得△ABC和△DEF组成一个轴对称图形,在网格中画出这个轴对称图形;
(2)在网格中画一个格点△A′B′C′,使△A′B′C′∽△ABC,且相似比不为1.
22.(9分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.
(1)求BC的长;
(2)尺规作图(保留作图痕迹,不写作法):作出△ABC的外接圆,并求外接圆半径.
23.(10分)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
24.(10分)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.
(1)填空:OA= ,k= ,点E的坐标为
;
(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.
①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;
②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;
③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.
25.(12分)如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G.
(1)判断直线PA与⊙O的位置关系,并说明理由;
(2)求证:AG2=AF•AB;
(3)求若⊙O的直径为10,AC=2,求AE的长.
26.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
参考答案
一.选择题
1.解:A、明天太阳从东方升起是必然事件,符合题意;
B、随意翻到一本书的某页,这页的页码是奇数是随机事件,不符合题意;
C、射击运动员射击一次,命中靶心是随机事件,不符合题意;
D、经过有交通信号灯的路口,遇到红灯是随机事件,不符合题意;
故选:A.
2.解:∵2a=3b,
∴两边都除以3a得: =,
∴=,
即=,
故选:A.
3.解:
∵y=﹣(x+2)2+3,
∴抛物线开口向下、对称轴为直线x=﹣2,顶点坐标为(﹣2,3),故①、②都正确;
在y=﹣(x+2)2+3中,令y=0可求得x=﹣2+<0,或x=﹣2﹣<0,
∴抛物线图象不经过第一象限,故③正确;
∵抛物线开口向下,对称轴为x=﹣2,
∴当x>﹣2时,y随x的增大而减小,
∴当x>2时,y随x的增大而减小,故④正确;
综上可知正确的结论有4个,
故选:A.
4.解:∵∠C=90°,AC=6,BC=8,
∴AB=10,
∴cosB==0.8,
故选:C.
5.解:因为r=6cm,n=60°,
根据扇形的面积公式S=进得:
S==6π(cm2).
故选:C.
6.解::①任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆;
②相等的圆心角所对的弧相等;错误,应该是在同圆或等圆中;
③平分弦的直径垂宜于弦;并且平分弦所对的弧,错误,此弦不是直径;
④圆内接四边形对角互补;正确;
故选:C.
7.解:∵∠ACD=∠B,∠CAD=∠BAC,
∴△ACD∽△ABC,
∴=()2=4.
∵S△ACD=3,
∴S△ABC=4•S△ACD=12,
∴S△BCD=S△ABC﹣S△ACD=9.
故选:B.
8.解:连接OE,如图所示:
∵四边形ABCD是菱形,
∴∠D=∠B=70°,AD=AB=3,
∴OA=OD=1.5,
∵OD=OE,
∴∠OED=∠D=70°,
∴∠DOE=180°﹣2×70°=40°,
∴的长=;
故选:A.
9.解:列表如下:
1
2
3
4
1
(1,2)
(1,3)
(1,4)
2
(2,1)
(2,3)
(2,4)
3
(3,1)
(3,2)
(3,3)
4
(4,1)
(4,2)
(4,3)
从1、2、3、4四个整数中任取两个数作为一个点的坐标共有12种等可能结果,
其中点恰好在抛物线y=x2上的只有(2,4)这一个结果,
所以这个点恰好在抛物线y=x2上的概率是,
故选:B.
10.解:连接DO,
∵PD与⊙O相切于点D,
∴∠PDO=90°,
∵∠C=90°,
∴DO∥BC,
∴△PDO∽△PCB,
∴===,
设PA=x,则=,
解得:x=4,
故PA=4.
故选:A.
11.解:连结OC,如图,
∵CE⊥AB,
∴∠AEC=∠CED=90°,
∴cosD==,
设DE=4x,则DC=5x,
∴CE=3x=8,解得x=,
∴DE=,DC=,
∵AB为直径,
∴∠ACB=90°,
∵∠A=∠BCD,
而∠A=∠ACO,
∴∠ACO=∠BCD,
∴∠OCD=90°,
在Rt△OCD中,cosD===,解得OD=,
∴OE=OD﹣DE=﹣=6,
在Rt△OCE中,OC==10,
∴OA=10,
∴AE=10+6=16,
在Rt△ACE中,AC===8.
故选:A.
12.解:由数据可得:当x=﹣3和﹣2时,对应y的值相等,
故函数的对称轴为:直线x=﹣,且数据从x=﹣5到﹣3对应的y值不断减小,
故函数有最小值,没有最大值,则其开口向上,x>﹣时,y随x的增大而增大.
故选项A,B,C都错误,只有选项D正确.
故选:D.
二.填空题(共6小题,满分24分,每小题4分)
13.解:
∵y=,
∴抛物线顶点坐标为(7,8),
故答案为:(7,8).
14.解:∵a、b、c、d是成比例线段,
∴a:b=c:d,
即1:2=3:d,
∴d=6;
故答案为:6
15.解:根据题意得=,
解得x=4,
故答案为:4.
16.解:连接OD,
∵AD∥OC,
∴∠DAB=∠BOC=50°,
∵OA=OD
∴∠AOD=180°﹣2∠DAB=80°,
∴∠ACD=∠AOD=40°
故答案为40°
17.解:如图所示:连接AQ.
∵BP•BQ=AB2,
∴=.
又∵∠ABP=∠QBA,
∴△ABP∽△QBA,
∴∠APB=∠QAB=90°,
∴QA始终与AB垂直.
当点P在A点时,Q与A重合,
当点P在C点时,AQ=2OC=4,此时,Q运动到最远处,
∴点Q运动路径长为4.
故答案为:4.
18.解:∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,
∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,
∵点B是这条抛物线上的另一点,且AB∥x轴,
∴点B的横坐标是﹣3,
∴AB=|0﹣(﹣3)|=3,
∴正方形ABCD的周长为:3×4=12,
故答案为:12.
三.解答题(共8小题,满分64分)
19.解:2sin30°﹣tan60°+cos60°﹣tan45°
=
=.
20.解:(1)根据题意,可以画出如下的树形图:
从树形图可以看出,两次摸球出现的所有可能结果共有6种.
(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,
∴摸出的两个小球号码之和等于4的概率为=.
21.解:(1)如图(答案不唯一).
(2)如图(答案不唯一).
22.解:(1)过点A作AE⊥BC于点E,
∵cosC=,
∴∠C=45°,
在Rt△ACE中,CE=AC•cosC=1,
∴AE=CE=1,
在Rt△ABE中,tanB=,即=,
∴BE=4AE=4,
∴BC=BE+CE=5;
(2)如图,①作线段AB的垂直平分线NM.
②作线段AC的垂直平分线GH与直线MN的交点O就是△ABC外接圆的圆心.
③以点O为圆心OA为半径作圆.
⊙O就是所求作的△ABC的外接圆.
∵∠AOC=2∠ABC,∠AOK=∠COK,
∴∠ABC=∠AOK,
∵sin∠AOK=sin∠ABC==,
由(1)可知AB==,
∴=,
∴AO=.
23.解:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000,即w=﹣10x2+700x﹣10000(20≤x≤32)
(2)对于函数w=﹣10x2+700x﹣10000的图象的对称轴是直线.
又∵a=﹣10<0,抛物线开口向下.∴当20≤x≤32时,W随着X的增大而增大,
∴当x=32时,W=2160
答:当销售单价定为32元时,每月可获得最大利润,最大利润是2160元.
(3)取W=2000得,﹣10x2+700x﹣10000=2000
解这个方程得:x1=30,x2=40.
∵a=﹣10<0,抛物线开口向下.
∴当30≤x≤40时,w≥2000.
∵20≤x≤32
∴当30≤x≤32时,w≥2000.
设每月的成本为P(元),由题意,得:P=20(﹣10x+500)=﹣200x+10000
∵k=﹣200<0,
∴P随x的增大而减小.
∴当x=32时,P的值最小,P最小值=3600.
答:想要每月获得的利润不低于2000元,小明每月的成本最少为3600元.
24.解:(1)∵A点坐标为(﹣6,0)
∴OA=6
∵过点C(﹣6,1)的双曲线y=
∴k=﹣6
y=4时,x=﹣
∴点E的坐标为(﹣,4)
故答案为:6,﹣6,(﹣,4)
(2)①设直线MN解析式为:y1=k1x+b1
由题意得:
解得
∵抛物线y=﹣过点M、N
∴
解得
∴抛物线解析式为:y=﹣x2﹣x+5t﹣2
∴顶点P坐标为(﹣1,5t﹣)
∵P在双曲线y=﹣上
∴(5t﹣)×(﹣1)=﹣6
∴t=
此时直线MN解析式为:
联立
∴8x2+35x+49=0
∵△=352﹣4×8×48=1225﹣1536<0
∴直线MN与双曲线y=﹣没有公共点.
②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点
∴4=5t﹣2,得t=
当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点
∴,得t=
∴t=或t=
③∵点P的坐标为(﹣1,5t﹣)
∴yP=5t﹣
当1≤t≤6时,yP随t的增大而增大
此时,点P在直线x=﹣1上向上运动
∵点F的坐标为(0,﹣)
∴yF=﹣
∴当1≤t≤4时,随者yF随t的增大而增大
此时,随着t的增大,点F在y轴上向上运动
∴1≤t≤4
当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)
当t=4﹣时,直线MN过点A.
当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为
S=
25.(1)PA与⊙O相切.
理由:连接CD
∵AD为⊙O的直径,
∴∠ACD=90°
∴∠D+∠CAD=90°
∵∠B=∠D,∠PAC=∠B
∴∠PAC=∠D,
∴∠PAC+∠CAD=90°
即DA⊥PA
∵点A在圆上,
∴PA与⊙O相切.
(2)证明:如图2,连接BG
∵AD为⊙O的直径,CG⊥AD
∴AC弧与AG弧相等
∴∠AGF=∠ABG
∵∠GAF=∠BAG
∴△AGF∽△ABG
∴AG:AB=AF:AG
∴AG2=AB•AF
(3)解:∵AD是直径,CG⊥AD
∴∠ACD=∠AEC=90°
∵∠CAD=∠EAC
∴△ACD∽△AEC
∴
即
∴AE=2
26.解:(1)如图1,设抛物线与x轴的另一个交点为D,
由对称性得:D(3,0),
设抛物线的解析式为:y=a(x﹣1)(x﹣3),
把A(0,3)代入得:3=3a,
a=1,
∴抛物线的解析式;y=x2﹣4x+3;
(2)如图2,设P(m,m2﹣4m+3),
∵OE平分∠AOB,∠AOB=90°,
∴∠AOE=45°,
∴△AOE是等腰直角三角形,
∴AE=OA=3,
∴E(3,3),
易得OE的解析式为:y=x,
过P作PG∥y轴,交OE于点G,
∴G(m,m),
∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,
∴S四边形AOPE=S△AOE+S△POE,
=×3×3+PG•AE,
=+×3×(﹣m2+5m﹣3),
=﹣+,
=﹣(m﹣)2+,
∵﹣<0,
∴当m=时,S有最大值是;
(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,
∵△OPF是等腰直角三角形,且OP=PF,
易得△OMP≌△PNF,
∴OM=PN,
∵P(m,m2﹣4m+3),
则﹣m2+4m﹣3=2﹣m,
解得:m=或,
∴P的坐标为(,)或(,);
如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,
同理得△ONP≌△PMF,
∴PN=FM,
则﹣m2+4m﹣3=m﹣2,
解得:x=或;
P的坐标为(,)或(,);
综上所述,点P的坐标是:(,)或(,)或(,)或(,).