由莲山课件提供http://www.5ykj.com/ 资源全部免费
第一章检测题
(时间:120分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.(内江中考)下列命题中,真命题是( C )
A.对角线相等的四边形是矩形 B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形 D.对角线互相垂直平分的四边形是正方形
2.(西宁中考)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( D )
A.5 B.4 C. D.
3.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( C )
A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD
,第2题图) ,第4题图) ,第5题图) ,第6题图)
4.如图,两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中,不一定成立的是( D )
A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
5.(衡阳中考)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是( A )
A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4)
6.(陕西中考)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于点M′、N′,则图中的全等三角形共有( C )
A.2对 B.3对 C.4对 D.5对
7.(广东中考)如图,正方形ABCD的面积为1,则以相邻两边中点连接EF为边的正方形EFGH的周长为( B )
A. B.2 C.+1 D.2+1
8.(葫芦岛中考)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( D )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B.4 C.4.5 D.5
,第7题图) ,第8题图) ,第9题图) ,第10题图)
9.(广州中考)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( A )
A. B.2 C. D.2
10.(宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A )
A.4.8 B.5 C.6 D.7.2
二、填空题(每小题3分,共18分)
11.(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为__3__.
12.(青岛中考)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为__32__度.
,第11题图) ,第12题图) ,第14题图) ,第16题图)
13.(兰州中考)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是__①③④__.
14.(江西中考)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为__2__.
15.(哈尔滨中考)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为__5.5或0.5__.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=__2n+1__.
三、解答题(共72分)
17.(6分)已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.
证明:易证△OBE≌△OCF(SAS),∴BE=CF
18.(7分)如图,菱形ABCD中,E是对角线AC上一点.
(1)求证:△ABE≌△ADE;
(2)若AB=AE,∠BAE=36°,求∠CDE的度数.
(1)证明:易证△ABE≌△ADE(SAS);
(2)解:∵AB=AE,∠BAE=36°,
∴∠AEB=∠ABE==72°,
∵△ABE≌△ADE,∴∠AED=∠AEB=72°,
∵四边形ABCD是菱形,∴AB∥CD,
∴∠DCA=∠BAE=36°,
∴∠CDE=∠AED-∠DCA=72°-36°=36°
19.(7分)(贺州中考)如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.
(1)求证:四边形ABCD是菱形;
(2)若CD=3,BD=2,求四边形ABCD的面积.
(1)证明:易证△AOD≌△COB(ASA),∴AO=OC,∵AC⊥BD,∴四边形ABCD是菱形
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)解:∵四边形ABCD是菱形,∴OD=BD=,∴OC==2,∴AC=2OC=4,∴S菱形ABCD=AC·BD=4
20.(7分)(上海中考)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE∶∠BCE=2∶3,求证:四边形ABCD是正方形.
证明:(1)在△ADE与△CDE中,,∴△ADE≌△CDE,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四边形ABCD为平行四边形,∵AD=CD,∴四边形ABCD是菱形
(2)∵BE=BC,∴∠BCE=∠BEC,∵∠CBE∶∠BCE=2∶3,∴∠CBE=180×=45°,∵四边形ABCD是菱形,∴∠ABE=45°,∴∠ABC=90°,∴四边形ABCD是正方形
21.(7分)(遵义中考)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.
(1)求证:CP=AQ;
(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.
(1)证明:易证△CFP≌△AEQ(ASA),∴CP=AQ
(2)解:∵AD∥BC,∴∠PBE=∠A=90°,
∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE-BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB·AD=2×4=8
22.(8分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.
(1)求证:△BAE≌△BCF;
(2)若∠ABC=40°,求当∠EBA为多少度时,四边形BFDE是正方形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)证明:易证△BAE≌△BCF(SAS)
(2)解:若∠ABC=40°,则当∠EBA=25°时,四边形BFDE是正方形.理由如下:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∠ABO=∠ABC=20°,∵AE=CF,∴OE=OF,∴四边形BFDE是平行四边形,又∵AC⊥BD,∴四边形BFDE是菱形,∵∠EBA=25°,∴∠OBE=25°+20°=45°,∴△OBE是等腰直角三角形,∴OB=OE,∴BD=EF,∴菱形BFDE是正方形
23.(8分)(云南中考)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.
(1)求证:四边形AEDF是菱形;
(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.
解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形
(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49①,∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36②,把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=
24.(10分)(开江县期末)如图,已知正方形ABCD,点E是BC上一点,以AE为边作正方形AEFG.
(1)求证:△ADG≌△ABE;
(2)求证:∠FCN=45°;
(3)请问在AB边上是否存在一点Q,使得四边形DQEF是平行四边形?若存在,请证明;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
证明:(1)∵四边形ABCD和四边形AEFG是正方形,
∴DA=BA,EA=GA,∴∠BAD=∠EAG=90°,
∴∠DAG=∠BAE,∴△ADG≌△ABE
(2)过F作BN的垂线,设垂足为H,∵∠BAE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠BAE=∠HEF,∵AE=EF,∴△ABE≌△EHF,∴AB=EH,BE=FH,∴AB=BC=EH,∴BE+EC=EC+CH,∴CH=BE=FH,∴∠FCN=45°
(3)在AB上取AQ=BE,连接QD,∵AB=AD,∴△DAQ≌△ABE,
∵△ABE≌△EHF,∴△DAQ≌△ABE≌△ADG,∴∠GAD=∠ADQ,
∴AG、QD平行且相等,又∵AG、EF平行且相等,∴QD、EF平行且相等,
∴四边形DQEF是平行四边形.∴在AB边上存在一点Q,使得四边形DQEF是平行四边形
25.(12分)(1)如图1,正方形ABCD中,点P为线段BC上一个动点,若线段MN垂直AP于点E,交线段AB于M,交线段CD于N,证明:AP=MN;
(2)如图2,正方形ABCD中,点P为线段BC上一动点,若线段MN垂直平分线段AP,分别交AB、AP、BD、DC于点M、E、F、N.求证:EF=ME+FN;
(3)若正方形ABCD的边长为2,求线段EF的最大值与最小值.
(1)证明:过B点作BH∥MN交CD于H,∵BM∥NH,BH∥MN,∴四边形MBHN为平行四边形.∴BH=MN.∵MN⊥AP,∴∠BAP+∠ABH=90°.又∵∠ABH+∠CBH=90°,∴∠BAP=∠CBH.在△ABP与△BCH中,∴△ABP≌△BCH.∴AP=BH.∴AP=MN
(2)连接FA,FP,FC.∵正方形ABCD是轴对称图形,F为对角线BD上一点,∴FA=FC.又∵FE垂直平分AP,∴FA=FP.∴FP=FC.∴∠FPC=∠FCP.∵∠FAB=∠FCP,∴∠FAB=∠FPC.又∵∠FPC+∠FPB=180°,∴∠FAB+∠FPB=180°.∴∠ABC+∠AFP=180°.∴∠AFP=90°.∴FE=AP.又∵AP=MN,∴ME+EF+FN=AP.∴EF=ME+FN
(3)由(2)有EF=MN,∵AC,BD是正方形的对角线,∴BD=2.当点P和点B重合时,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
EF最小=MN=AB=1.当点P和点C重合时,EF最大=MN=BD=
由莲山课件提供http://www.5ykj.com/ 资源全部免费