期末专题复习:苏科版九年级数学上册 第四章 等可能条件下的概率 单元评估检测
一、单选题(共10题;共30分)
1.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为13,则袋中红球的个数为( )
A. 10 B. 15 C. 5 D. 2
2.一个袋子里有16个除颜色外其他完全相同的球,若摸到红球的机会为 34 ,则可估计袋中红球的个数为( )
A. 12 B. 4 C. 6 D. 不能确定
3.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )
A. 1 B. 12 C. 13 D. 14
4.某校初中部20个班开展合唱比赛,以抽签方式决定每个班的出场顺序,签筒中有20根形状、大小完全相同的纸签。上面分别标有1,2,…,20,某班长首先抽签,他在看不到纸签上的数字的情况下,从签筒中随机抽取一根纸签,抽中序号是5的倍数的概率是:( )
A. 320 B. 110 C. 15 D. 19
5.某校举行“中国梦•我的梦”演讲比赛,需要在初三年级选取一名主持人,共有12名同学报名参加,其中初三(1)班有2名,初三(2)班有4名,初三(3)班有6名,现从这12名同学中随机选取一名主持人,则选中的这名同学恰好是初三(1)班同学的概率是( )
A. 112 B. 13 C. 12 D. 16
6.假定鸟卵孵化后,雏鸟为雌与雄的概率相同。如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )
A. 16 B. 38 C. 58 D. 23
7.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是( )
A. 1 B. 14 C. 12 D. 34
8.一个不透明口袋中装有2个白球,3个红球,4个黄球,每个球除颜色不同外其它都相同,搅拌均匀后,小张从口袋中任意摸出一个球是红球的概率为()
A. 19 B. 16 C. 13 D. 23
9.有四张背面完全相同且不透明的卡片,每张卡片的正面分别写有数字﹣2,3 , 0,-8 , 将它们背面朝上,洗均匀后放置在桌面上,若随机抽取一张卡片,则抽到的数字恰好是无理数的概率是( )
第 8 页 共 8 页
A. 14 B. 12 C. 34 D. 1
10.小亮和小刚按如下规则做游戏:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.从概率的角度分析,游戏者事先选择( )获胜的可能性较大.
A. 5 B. 6 C. 7 D. 8
二、填空题(共10题;共30分)
11.不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是________.
12.(2017•徐州)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为________.
13.某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是________.
14.布袋中有红、黄、蓝三种不同颜色的球各一个,从中先摸出一个球,记录下颜色后不放回布袋,将布袋搅匀,再摸出一个球,这时摸出的两个球是“一红一黄”的概率为________.
15.在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是________.
16.一个袋中有5个球,分别标有1,2,3,4,5这五个号码,这些球除号码外都相同,搅匀后任意摸出一个球,则摸出标有数字为奇数的球的概率为________。
17.(2013•河池)袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,这个球为白球的概率是________.
18.在一个不透明的摇奖箱内装有25个现状、大小、质地等完全相同的小球,其中只有5个球标有中奖标志,那么随机抽取一个小球中奖的概率是________.
19.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为________
20.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每上面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是 ________.
三、解答题(共8题;共60分)
21.现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)
第 8 页 共 8 页
22.小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1-4的四个球(除编号不同外其它都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜.这个游戏对双方公平吗?请说明理由.
23.5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.
(1)小明一共有多少种可能的购买方案?列出所有方案;
(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.
24.甲口袋里装有2个相同的小球,它们分别写有数字1和2;乙口袋里装有3个相同的小球,它们分别写有数字3,4,5;丙口袋里有2个相同的小球,它们分别写有数字6,7。从三个口袋中各随机地取出1个小球,按要求解答下列问题:
(1)画出“树形图”;
(2)取出的3个小球上只有1个偶数数字的概率是多少?
(3)取出的3个小球上全是奇数数字的概率是多少?
25.有一类随机事件概率的计算方法:设试验结果落在某个区域S中的每一点的机会均等,用A表示事件“试验结果落在S中的一个小区域M中”,那么事件A发生的概率P(A)=M的面积/S的面积.有一块边长为30cm的正方形ABCD飞镖游戏板,假设飞镖投在游戏板上的每一点的机会均等.求下列事件发生的概率:
(1)在飞镖游戏板上画有半径为5cm的一个圆(如图1),求飞镖落在圆内的概率;
(2)飞镖在游戏板上的落点记为点O,求△OAB为钝角三角形的概率.
第 8 页 共 8 页
26.从一副扑克牌中任意抽取一张,(1)这张牌是“A”(2)这张牌是“红心的”(3)这张牌是“大王”(4)这张牌是“红色的”估计上述事件发生的可能性的大小,将这些事件的序号按发生的可能性从小到大的顺序排列.
27.在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2的卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是15 .
(1)求木箱中装有标1的卡片张数;
(2)求从箱子中随机摸出一张标有数字3的卡片的概率.
28.大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.
(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?
(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?
第 8 页 共 8 页
答案解析部分
一、单选题
1.【答案】A
2.【答案】A
3.【答案】B
4.【答案】C
5.【答案】D
6.【答案】B
7.【答案】D
8.【答案】C
9.【答案】B
10.【答案】C
二、填空题
11.【答案】23
12.【答案】23
13.【答案】
14.【答案】13 .
15.【答案】13
16.【答案】35
17.【答案】13
18.【答案】15
19.【答案】1112
20.【答案】甲
三、解答题
第 8 页 共 8 页
21.【答案】解:
共有9种情况,两次都为O型的有4种情况,所以概率是 49 .
22.【答案】解:根据题意,画树状图如下:
∴P(两次数字之和大于5)= 616=38 ,P(两次数字之和不大于5)= 1016=58 ,
∵ 38 ≠ 58 ,
∴游戏不公平
23.【答案】解:(1)设购买康乃馨x支,购买兰花y支,由题意,得
5x+3y≤30x+y≥7x≥1 ,
∵x、y为正整数,
当x=1时,y=6,7,8符合题意,
当x=2时,y=5,6符合题意,
当x=3时,y=4,5符合题意,
当x=4时,y=3符合题意,
当x=5时,y=1舍去,
当x=6时,y=0舍去.
共有8种购买方案,
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案3:购买康乃馨1支,购买兰花8支;
方案4:购买康乃馨2支,购买兰花5支;
方案5:购买康乃馨2支,购买兰花6支;
方案6:购买康乃馨3支,购买兰花4支;
方案7:购买康乃馨3支,购买兰花5支;
第 8 页 共 8 页
方案8:购买康乃馨4支,购买兰花3支;
(2)由题意,得,
5x+3y≤28x+y≥7x≥1 ,
购花的方案有:
方案1:购买康乃馨1支,购买兰花6支;
方案2:购买康乃馨1支,购买兰花7支;
方案4:购买康乃馨2支,购买兰花5支;
方案5:购买康乃馨2支,购买兰花6支;
∴小明实现购买方案的愿望有5种,而总共有8中购买方案,
∴小明能实现购买愿望的概率为P=58 .
24.【答案】解:(1)画树状图得:
(2)∵共有12种等可能的结果,取出的3个小球上只有1个偶数数字的有5种情况,
∴取出的3个小球上只有1个偶数数字的概率是:512;
(3)∵共有12种等可能的结果,取出的3个小球上全是奇数数字的有2种情况,
∴取出的3个小球上全是奇数数字的概率是:212=16.
25.【答案】解:(1)∵半径为5cm的圆的面积=π•52=25πcm2 ,
边长为30cm的正方形ABCD的面积=302=900cm2 ,
∴P(飞镖落在圆内)=半径为5cm的圆的面积/边长为30cm的正方形ABCD的面积=25π900=π36
(2)如图可得:当点O落在以AB为直径的半圆内△OAB为钝角三角形.
∵S半圆=12•π•152=2252π,
∴P(△OAB为钝角三角形)=2252π900=π8
第 8 页 共 8 页
26.【答案】解:从一副扑克牌中任意抽取一张,(1)这张牌是“A”的概率为 ;(2)这张牌是“红心”的概率为 ;(3)这张牌是“大王”的概率为 ;(4)这张牌是“红色的”的概率为 , 故(3)<(1)<(2)<(4).
27.【答案】解:(1)根据题意得:
50×15=10,
答:箱中装有标1的卡片10张;
(2)设装有标3的卡片x张,则标2的卡片有3x﹣8张,
根据题意得:x+3x﹣8=40,
解得:x=12,
所以摸出一张有标3的卡片的概率P=1250=625.
28.【答案】解:(1)由题意分析可得:要使他两次数字之和为100,则第二次必须转到95,因为总共有20个数字,所以他两次数字之和为100的可能性为120;
(2)由题意分析可得:转到数字35以上就会“爆掉”,共有13种情况,因为总共有20个数字,
所以“爆掉”的可能性为1320.
第 8 页 共 8 页