江苏海安八校2017-2018七年级数学下册第一次阶段试题(带答案)
加入VIP免费下载

本文件来自资料包: 《江苏海安八校2017-2018七年级数学下册第一次阶段试题(带答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
江苏省海安县八校2017-2018学年七年级数学下学期第一次阶段测试试题 一.选择题(共10小题,每题2分,共20分)‎ ‎1. 在3,0,-2,-四个数中,最小的数是 A.3 B.0 C.-2 D.-‎ ‎2.下列四个图形中,不能推出∠2与∠1相等的是 ‎ ‎ A. ‎ B. C. D.‎ ‎3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=140°,则∠AOC=‎ A.50° B.60° C.70° D.80°‎ ‎ 第3题 第4题 第6题 第7题 ‎4.如图,如果AB∥CD,CD∥EF,那么∠BCE等于(  )‎ A.∠1+∠2 B.∠2-∠1 C.180°-∠2+∠1 D.180°-∠1+∠2‎ ‎5.下列各式中,正确的是(  )‎ A.=±4 B. C. D. ‎ ‎6. 如图所示,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角(不包括∠AGE本身)有(  )‎ A.3个 B.4个 C.5个 D.6个 ‎7.如图,下列推理及括号中所注明的推理依据错误的是(  )‎ A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)‎ B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)‎ C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)‎ D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)‎ ‎8.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是(  )‎ A.a+b>0 B.ab=0 C.<0 D.>0‎ ‎9. 如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 9‎ 处,此时需把方向调整到与出发时一致,则方向的调整应是( )‎ A.右转80° B.左转80° C.右转100° D.左转100°‎ ‎10.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[-2.5]=-3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1(  )‎ A.1 B.2 C.3 D.4‎ ‎ ‎ ‎ 第8题 第9题 第10题 二.填空题(共8小题每小题3分共24分)‎ ‎11.立方根等于它本身的数是   . ‎ ‎12.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是   .‎ ‎13.如果a,b分别是2018的两个平方根,那么a+b-ab=   .‎ ‎14.命题:“同角的余角相等”的题设是_ _____,结论是____ ____.‎ ‎15.已知a、b为两个连续的整数,若a<1+2<b,则ab的值为   .‎ ‎16.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角的度数分别 .‎ ‎17.已知,且|a+b|=-a-b,则a-b的值是   .‎ ‎18.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数 .‎ 三.解答题(共8小题,共56分)‎ ‎19.(9分)计算 ‎(1) (2) ‎ ‎ ‎ 9‎ ‎ (3) ‎ 9‎ ‎20.(11分)请把下面证明过程补充完整:‎ 已知:如图,∠ADC=∠ABC,BE、DF分别平行∠ABC、∠ADC,且∠1=∠2.‎ 求证:∠A=∠C.‎ 证明:因为BE、DF分别平分∠ABC、∠ADC,(   ).‎ 所以∠1=∠ABC,∠3=∠ADC(   ).‎ 因为∠ABC=∠ADC(已知),‎ 所以∠1=∠3(   ),‎ 因为∠1=∠2(已知),‎ 所以∠2=∠3(   ).‎ 所以   ∥   (   ).‎ 所以∠A+∠   =180°,∠C+∠   =180°(   ).‎ 所以∠A=∠C(   ).‎ ‎21.(6分)把下列各数的序号填到相应的横线上:‎ ‎① ②- ③ ④0 ⑤π,‎ ‎⑥-3.14 ⑦2. ⑧1.3030030003…(每两个3之间多一个0)‎ 整数:   负分数:   无理数:   ‎ ‎22.(5分)如图,已知E是AB上的点,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.‎ ‎23.(5分)已知某正数的两个平方根分别是a-3和2a+15,b的立方根是-2.求-2a-b的算术平方根.‎ ‎24.(5分)如图①是大众汽车的图标,图②是该图标抽象的几何图形,且AC∥BD,∠A=∠B 9‎ ‎,试猜想AE与BF的位置关系,并说明理由.‎ 9‎ ‎25.(5分)实数a,b,c是数轴上三点A,B,C所对应的数,如图,‎ 化简+|a-b|+-|b-c|‎ ‎26.(10分)如图,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补.‎ ‎(1)试判断直线AB与直线CD的位置关系,并说明理由。‎ ‎(2)如图2,∠BEF与∠EFD的角平分线交于点P.EP与CD交与点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH.‎ ‎(3)如图3在(2)的条件下连结PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变请求出其值.若变化说明理由.‎ 9‎ ‎2018年七年级第一次月考答案 一、 选择题。‎ 1. C 2. B 3. D 4. C 5. D 6. C 7. D 8.D 9. A 10. C ‎ 二、 填空题。‎ ‎11. -1、1、0 12. 13. 2018 14. 如果两个角是同一个角的余角 那么这两个角相等 15. 20 16. 10º,10º或42º,138º ‎ ‎17. -1 或-7 18. 120º 三、 解答题。‎ ‎19. ‎ ‎20. 已知,角平分线的定义,等式的性质,等量代换,等量代换,AB∥CD,内错角相等,两直线平行,ADC,ABC,两直线平行,同旁内角互补,等式的性质.‎ ‎21. 整数:;-------------------------------------------------------------2分 负分数:⑥;------------------------------------------------------------------4分 无理数:②⑤⑧;----------------------------------------------------------6分 ‎22. 解:∠B=∠C.-------------------------------------------------------1分 理由如下:‎ ‎∵AD∥BC,‎ 9‎ ‎∴∠EAD=∠B,∠DAC=∠C.-------------------------------------3分 ‎ ‎∵AD平分∠EAC,‎ ‎∴∠EAD=∠DAC,------------------------------------------------ -----5分 ‎∴∠B=∠C.--------------------------------------------------------------6分 ‎23.解:∵某正数的两个平方根分别是a﹣3和2a+15,b的立方根是﹣2.‎ ‎∴a﹣3+2a+15=0,b=﹣8,解得a=﹣4.------------------------3分 ‎∴﹣2a﹣b=16, ----------------------------------------------------5分 ‎16的算术平方根是4.----------------------------------------------6分 ‎24. 解:AE∥BF,理由如下:----------------------------------------------1分 ‎∵AC∥BD,‎ ‎∴∠A=∠DOE,----------------------------------------------------3分 ‎∵∠A=∠B,‎ ‎∴∠DOE=∠B,------------------------------------------------5分 ‎∴AE∥BF.-----------------------------------------------------6分 ‎25. 解:原式=|a|+|a﹣b|+a+b﹣|b﹣c|---------------2分 ‎=﹣a+a﹣b+a+b﹣c+b----------------------------------4分 ‎=a+b﹣c.------------------------------------------------6分 ‎26. 解:(1)∵∠1与∠2互补,‎ ‎∴∠1+∠2=180°.‎ 又∵∠1=∠AEF,∠2=∠CFE,‎ ‎∴∠AEF+∠CFE=180°,‎ ‎∴AB∥CD;----------------------------------------------3分 ‎(2)如图2,由(1)知,AB∥CD,‎ ‎∴∠BEF+∠EFD=180°.‎ 又∵∠BEF与∠EFD的角平分线交于点P,‎ ‎∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,‎ ‎∴∠EPF=90°,即EG⊥PF.‎ ‎∵GH⊥EG,∴PF∥GH;------------------------------6分 ‎(3)∠HPQ的大小不发生变化,理由如下:---------- 7分 9‎ 如图3,∵∠1=∠2,‎ ‎∴∠3=2∠2.‎ 又∵GH⊥EG,‎ ‎∴∠4=90°-∠3=90°-2∠2.‎ ‎∴∠EPK=180°-∠4=90°+2∠2.‎ ‎∵PQ平分∠EPK,‎ ‎∴∠QPK=∠EPK=45°+∠2.‎ ‎∴∠HPQ=∠QPK-∠2=45°,‎ ‎∴∠HPQ的大小不发生变化,一直是45° ---------------10分 9‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料