2018高考数学考点突破--数列的综合应用(含解析)
加入VIP免费下载

本文件来自资料包: 《2018高考数学考点突破--数列的综合应用(含解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
数列的综合应用 ‎【考点突破】‎ 考点一、等差、等比数列的综合问题 ‎【例1】 已知{an}是等比数列,前n项和为Sn(n∈N*),且-=,S6=63.‎ ‎(1)求{an}的通项公式;‎ ‎(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(-1)nb}的前2n项和.‎ 解析] (1)设数列{an}的公比为q.‎ 由已知,有-=,‎ 解得q=2或q=-1.‎ 又由S6=a1·=63,知q≠-1,‎ 所以a1·=63,得a1=1.‎ 所以an=2n-1.‎ ‎(2)由题意,得bn=(log2an+log2an+1)‎ ‎=(log22n-1+log22n)=n-,‎ 即{bn}是首项为,公差为1的等差数列.‎ 设数列{(-1)nb}的前n项和为Tn,则 T2n=(-b+b)+(-b+b)+…+(-b+b)‎ ‎=b1+b2+b3+b4+…+b2n-1+b2n ‎==2n2.‎ ‎【类题通法】‎ ‎1.若{an}是等差数列,则{ban}(b>0,且b≠1)是等比数列;若{an}是正项等比数列,则{logban}(b>0,且b≠1)是等差数列.‎ ‎2.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系,以便实现等差、等比数列之间的相互转化.‎ ‎【对点训练】‎ ‎1. 已知数列{an}的前n项和为Sn,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.‎ ‎(1)求数列{an}的通项公式;‎ ‎(2)设a1>0,λ=100.当n为何值时,数列的前n项和最大?‎ 解析] (1)取n=1,得λa=2S1=‎2a1,a1(λa1-2)=0.‎ 若a1=0,则Sn=0.‎ 当n≥2时,an=Sn-Sn-1=0-0=0,‎ 所以an=0(n≥1).‎ 若a1≠0,则a1=.‎ 当n≥2时,2an=+Sn,2an-1=+Sn-1,‎ 两式相减得2an-2an-1=an,‎ 所以an=2an-1(n≥2),从而数列{an}是等比数列,‎ 所以an=a1·2n-1=·2n-1=.‎ 综上,当a1=0时,an=0;当a1≠0时,an=.‎ ‎(2)当a1>0,且λ=100时,令bn=lg,‎ 由(1)知,bn=lg=2-nlg 2.‎ 所以数列{bn}是单调递减的等差数列,公差为-lg 2.‎ b1>b2>…>b6=lg=lg>lg 1=0,‎ 当n≥7时,bn≤b7=lg=lg

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料