专题一
第3讲 导数与函数综合问题
函数、导数与不等式
考向预测
1.利用导数研究函数的性质,以含指数函数、对数函数、三次有理函数为载体,研究函数的单调性、极值、最值,并能解决简单的问题.
2. 在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以含指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题.
知识与技巧的梳理
1.导数的几何意义
函数f(x) 在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).
2.四个易误导数公式
(1)(sin x)′=cos x;
(2)(cos x)′=-sin x;
(3)(ax)′=axln a(a>0,且a≠1);
(4)(logax)′=(a>0,且a≠1,x>0).
3.利用导数研究函数的单调性
(1)导数与函数单调性的关系.
①f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.
②f′(x)≥0是f(x)为增函数的必要不充分条件,如果函数在某个区间内恒有f′(x)=0时,则f(x)为常数函数.
(2)利用导数研究函数单调性的方法.
①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f′(x)>0或f′(x)0,右侧f′(x)0或f(x2)<0
两个
f(x1)=0或者f(x2)=0
三个
f(x1)<0且f(x2)>0
7.利用导数解决不等式问题
(1)利用导数证明不等式.
若证明f(x)g(x)的解集的子集⇔[f(x)-g(x)]min>0(x∈I).
②∃x∈I,使f(x)>g(x)成立⇔I与f(x)>g(x)的解集的交集不是空集⇔[f(x)-g(x)]max>0(x∈I).
③对∀x1,x2∈I使得f(x1)≤g(x2)⇔f(x)max≤g(x)min.
④对∀x1∈I,∃x2∈I使得f(x1)≥g(x2)⇔f(x)min≥g(x)min.
热点题型
热点一 利用导数研究函数的单调性
【例1】 (2019·衡水中学)已知函数,.
(1)讨论的单调性;
(2)当,,为两个不相等的正数,证明:.
解(1)函数的定义域为,.
若,,则在区间内为增函数;
若,令,得.
则当时,,在区间内为增函数;
当时,,在区间内为减函数.
(2)当时,.不妨设,则原不等式等价于,
令,则原不等式也等价于即.
下面证明当时,恒成立.
设,则,
故在区间内为增函数,,即,
所以.
探究提高 1.求函数的单调区间,只需在函数的定义域内解(证)不等式f′(x)>0或f′(x)0.
(2)对k分类讨论不全,题目中已知k>0,对k分类讨论时容易对标准划分不准确,讨论不全面.
【训练1】 已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).
(1)当a=2时,求函数f(x)的单调递增区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围;
(3)函数f(x)是否为R上的单调减函数?若是,求出a的取值范围,若不是,请说明理由.
解 (1)当a=2时,f(x)=(-x2+2x)·ex,
所以f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.
令f′(x)>0,即(-x2+2)ex>0,
因为ex>0,所以-x2+2>0,解得-<x<.
所以函数f(x)的单调递增区间是(-,).
(2)因为函数f(x)在(-1,1)上单调递增,
所以f′(x)≥0对x∈(-1,1)都成立.
因为f′(x)=(-2x+a)ex+(-x2+ax)ex=[-x2+(a-2)x+a]ex,
所以[-x2+(a-2)x+a]ex≥0对x∈(-1,1)都成立.
因为ex>0,所以-x2+(a-2)x+a≥0,
则a≥==(x+1)-对x∈(-1,1)都成立.
令g(x)=(x+1)-,则g′(x)=1+>0.
所以g(x)=(x+1)-在(-1,1)上单调递增.所以g(x)<g(1)=(1+1)-=.
所以a的取值范围是.
(3)若函数f(x)在R上单调递减,则f′(x)≤0对x∈R都成立,即[-x2+(a-2)x+a]ex≤0对x∈R都成立.
因为ex>0,所以x2-(a-2)x-a≥0对x∈R都成立.
所以Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.
故函数f(x)不可能在R上单调递减.
热点二 利用导数研究函数的极值和最值
【例2】 (2018·安阳调研)已知函数的极大值为2.
(1)求实数的值;
(2)求在上的最大值.
解(1)依题意,
所以在和上单调递增,在上单调递减,
所以在处取得极大值,即,解得.
(2)由(1)知在和上单调递增,在上单调递减,
①当,即时,在上单调递增,
所以在上的最大值为.
②当,即时,在上单调递增,在上单调递减,
在上的最大值为.
③当且,即时,在上单调递减,
所以在上的最大值为.
④当,即时,令,得或(舍去)
当时,在上的最大值为.
当时,在上的最大值为.
综上可知:
当或时,在上的最大值为;
当时,在上的最大值为;
当时,在上的最大值为.
探究提高 1.求函数f(x)的极值,则先求方程f′(x)=0的根,再检查f′(x)在方程根的左右附近函数值的符号.
2.若已知极值大小或存在情况,则转化为已知方程f′(x)=0根的大小或存在情况来求解.
3.求函数f(x)在闭区间[a,b]的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值.
【训练2】 (2017·郴州二模选编)已知函数f(x)=ax2+(1-2a)x-ln x.
(1)当a>0时,求函数f(x)的单调递增区间;
(2)当a0,因为a>0,x>0,∴>0,∴x-1>0,得x>1,
∴f(x)的单调递增区间为(1,+∞).
(2)由(1)可得f′(x)=,
因为a1,即-