2018高考数学热点题型--立体几何(理科带解析)
加入VIP免费下载

本文件来自资料包: 《2018高考数学热点题型--立体几何(理科带解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
立体几何 热点一 空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.‎ ‎【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.‎ ‎(1)求证:平面PBD⊥平面COD;‎ ‎(2)求直线PD与平面BDC所成角的正弦值.‎ ‎(1)证明 ∵OB=OC,又∵∠ABC=,‎ ‎∴∠OCB=,∴∠BOC=.‎ ‎∴CO⊥AB.‎ 又PO⊥平面ABC,‎ OC⊂平面ABC,∴PO⊥OC.‎ 又∵PO,AB⊂平面PAB,PO∩AB=O,‎ ‎∴CO⊥平面PAB,即CO⊥平面PDB.‎ 又CO⊂平面COD,‎ ‎∴平面PDB⊥平面COD.‎ ‎(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.‎ 设OA=1,则PO=OB=OC=2,DA=1.‎ 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),‎ ‎∴=(0,-1,-1),=(2,-2,0),=(0,-3,1).‎ 设平面BDC的一个法向量为n=(x,y,z),‎ ‎∴∴ 令y=1,则x=1,z=3,∴n=(1,1,3).‎ 设PD与平面BDC所成的角为θ,‎ 则sin θ= ‎==.‎ 即直线PD与平面BDC所成角的正弦值为.‎ ‎【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系.‎ 第二步:确定点的坐标.‎ 第三步:求向量(直线的方向向量、平面的法向量)坐标.‎ 第四步:计算向量的夹角(或函数值).‎ 第五步:将向量夹角转化为所求的空间角.‎ 第六步:反思回顾.查看关键点、易错点和答题规范.‎ ‎【对点训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD‎1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.‎ ‎(1)证明:EF∥B‎1C.‎ ‎(2)求二面角EA1DB1的余弦值.‎ ‎(1)证明 由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B‎1C∥A1D,又A1D⊂面A1DE,B‎1C⊄面A1DE,于是B‎1C∥面A1DE.又B‎1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B‎1C.‎ ‎(2)解 因为四边形AA1B1B,ADD‎1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以,,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.‎ 设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量=,=(0,1,-1),由n1⊥,‎ n1⊥得r1,s1,t1应满足的方程组 ‎(-1,1,1)为其一组解,所以可取n1=(-1,1,1).‎ 设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).‎ 所以结合图形知二面角EA1DB1的余弦值为 ==.‎ 热点二 立体几何中的探索性问题 此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:‎ ‎(1)根据条件作出判断,再进一步论证;‎ ‎(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.‎ ‎【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.‎ ‎(1)求证:PD⊥平面PAB;‎ ‎(2)求直线PB与平面PCD所成角的正弦值;‎ ‎(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.‎ ‎(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,‎ 所以AB⊥平面PAD,所以AB⊥PD.‎ 又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.‎ ‎(2)解 取AD的中点O,连接PO,CO.‎ 因为PA=PD,所以PO⊥AD.‎ 因为PO⊂平面PAD,平面PAD⊥平面ABCD,‎ 所以PO⊥平面ABCD.‎ 因为CO⊂平面ABCD,所以PO⊥CO.‎ 因为AC=CD,所以CO⊥AD.‎ 如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).‎ 设平面PCD的一个法向量为n=(x,y,z),则 即 令z=2,则x=1,y=-2.‎ 所以n=(1,-2,2).‎ 又=(1,1,-1),所以cos〈n,〉==-.‎ 所以直线PB与平面PCD所成角的正弦值为.‎ ‎(3)解 设M是棱PA上一点,则存在λ∈0,1],使得=λ.‎ 因此点M(0,1-λ,λ),=(-1,-λ,λ).‎ 因为BM⊄平面PCD,所以要使BM∥平面PCD,‎ 则·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.‎ 所以在棱PA上存在点M,使得BM∥平面PCD,此时=.‎ ‎【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.‎ ‎(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.‎ ‎【对点训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠PAD=45°,E为PA的中点.‎ ‎(1)求证:DE∥平面BPC;‎ ‎(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.‎ ‎(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.‎ ‎∵CN⊥AB,DA⊥AB,∴CN∥DA,‎ 又AB∥CD,∴四边形CDAN为平行四边形,‎ ‎∴CN=AD=8,DC=AN=6,‎ 在Rt△BNC中,‎ BN===6,‎ ‎∴AB=12,而E,M分别为PA,PB的中点,‎ ‎∴EM∥AB且EM=6,又DC∥AB,‎ ‎∴EM∥CD且EM=CD,四边形CDEM为平行四边形,‎ ‎∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,‎ ‎∴DE∥平面BPC.‎ ‎(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以 D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,‎ 则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).‎ 假设AB上存在一点F使CF⊥BD,‎ 设点F坐标为(8,t,0),‎ 则=(8,t-6,0),=(8,12,0),‎ 由·=0得t=.‎ 又平面DPC的一个法向量为m=(1,0,0),‎ 设平面FPC的法向量为n=(x,y,z).‎ 又=(0,6,-8),=.‎ 由得即 不妨令y=12,有n=(8,12,9).‎ 则cos〈n,m〉===.‎ 又由图可知,该二面角为锐二面角,‎ 故二面角F-PC-D的余弦值为.‎ 热点三 立体几何中的折叠问题 将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.‎ ‎【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.‎ ‎(1)证明:D′H⊥平面ABCD;‎ ‎(2)求二面角B-D′A-C的正弦值.‎ ‎(1)证明 由已知得AC⊥BD,AD=CD.‎ 又由AE=CF得=,故AC∥EF.‎ 因此EF⊥HD,从而EF⊥D′H.‎ 由AB=5,AC=6得DO=BO==4.‎ 由EF∥AC得==.所以OH=1,D′H=DH=3.‎ 于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.‎ 又D′H⊥EF,而OH∩EF=H,‎ 所以D′H⊥平面ABCD.‎ ‎(2)解 如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.‎ 则H(0,0,0),A(-3,-1,0),‎ B(0,-5,0),C(3,-1,0),‎ D′(0,0,3),=(3,-4,0),=(6,0,0),=(3,1,3).‎ 设m=(x1,y1,z1)是平面ABD′的一个法向量,‎ 则即 所以可取m=(4,3,-5).‎ 设n=(x2,y2,z2)是平面ACD′的一个法向量,‎ 则即 所以可取n=(0,-3,1).‎ 于是cos〈m,n〉===-.‎ sin〈m,n〉=.‎ 因此二面角B-D′A-C的正弦值是.‎ ‎【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.‎ ‎【对点训练】如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.‎ ‎(1)证明:CD⊥平面A1OC;‎ ‎(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.‎ ‎(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,‎ 从而BE⊥平面A1OC.‎ 又CD∥BE,所以CD⊥平面A1OC.‎ ‎(2)解 由已知,平面A1BE⊥平面BCDE,‎ 又由(1)知,BE⊥OA1,BE⊥OC,‎ 所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.‎ 如图,以O为原点,,,分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,‎ 所以B,E,A1,C,‎ 得=,=,==(-,0,0).‎ 设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,‎ 则得取n1=(1,1,1);‎ 得取n2=(0,1,1),‎ 从而cos θ=|cos〈n1,n2〉|==,‎ 即平面A1BC与平面A1CD夹角的余弦值为.‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料