三角函数与解三角形
热点一 三角函数的图象和性质
注意对基本三角函数y=sin x,y=cos x的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y=Asin(ωx+φ)的形式,然后利用整体代换的方法求解.
【例1】已知函数f(x)=sin x-2sin2.
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最小值.
(1)解 因为f(x)=sin x+cos x-.
=2sin-.
所以f(x)的最小正周期为2π.
(2)解 因为0≤x≤,所以≤x+≤π.
当x+=π,即x=时,f(x)取得最小值.
所以f(x)在区间上的最小值为f=-.
【类题通法】求函数y=Asin(ωx+φ)+B周期与最值的模板
第一步:三角函数式的化简,一般化成y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h的形式;
第二步:由T=求最小正周期;
第三步:确定f(x)的单调性;
第四步:确定各单调区间端点处的函数值;
第五步:明确规范地表达结论.
【对点训练】设函数f(x)=-sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为.
(1)求ω的值;
(2)求f(x)在区间上的最大值和最小值.
解 (1)f(x)=-sin2ωx-sin ωxcos ωx
=-·-sin 2ωx
=cos 2ωx-sin 2ωx=-sin.
因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故该函数的周期T=4×=π.又ω>0,所以=π,因此ω=1.
(2)由(1)知f(x)=-sin.设t=2x-,则函数f(x)可转化为y=-sin t.
当π≤x≤时,≤t=2x-≤ ,
如图所示,作出函数y=sin t在 上的图象,
由图象可知,当t∈时,sin t∈,
故-1≤-sin t≤,因此-1≤f(x)=-sin≤.
故f(x)在区间上的最大值和最小值分别为,-1.
热点二 解三角形
高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.
【例2】在△ABC中,角A,B,C所对的边分别为a,b,c,f(x)=2sin(x-A)cos x+sin(B+C)(x∈R),函数f(x)的图象关于点对称.
(1)当x∈时,求函数f(x)的值域;
(2)若a=7,且sin B+sin C=,求△ABC的面积.
解 (1)∵f(x)=2sin(x-A)cos x+sin(B+C)
=2(sin xcos A-cos xsin A)cos x+sin A
=2sin xcos Acos x-2cos2xsin A+sin A
=sin 2xcos A-cos 2xsin A=sin(2x-A),
又函数f(x)的图象关于点对称,
则f=0,即sin=0,
又A∈(0,π),则A=,
则f(x)=sin.
由于x∈,
则2x-∈,
即-b=,∴a+c∈(,2].
即a+c的取值范围是(,2].
【类题通法】向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.
【对点训练】已知向量a=(m,cos 2x),b=(sin 2x,n),函数f(x)=a·b,且y=f(x)的图象过点和点.
(1)求m,n的值;
(2)将y=f(x)的图象向左平移φ(0