2019届高考数学二轮复习专题--数列(带答案)
加入VIP免费下载

本文件来自资料包: 《2019届高考数学二轮复习专题--数列(带答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
专题二 第4讲 数列 三角函数、解三角形、平面向量与数列 考向预测 ‎1.等差、等比数列基本运算和性质的考查是高考热点,经常以小题形式出现;‎ ‎2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下.‎ ‎3.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下.‎ 知识与技巧的梳理 ‎1.等差数列 ‎(1)通项公式:an=a1+(n-1)d;‎ ‎(2)求和公式:Sn==na1+d;‎ ‎(3)性质:‎ ‎①若m,n,p,q∈N*,且m+n=p+q,则am+an=ap+aq;‎ ‎②an=am+(n-m)d;‎ ‎③Sm,S2m-Sm,S3m-S2m,…,成等差数列.‎ ‎2.等比数列 ‎(1)通项公式:an=a1qn-1(q≠0);‎ ‎(2)求和公式:q=1,Sn=na1;q≠1,Sn==;‎ ‎(3)性质:‎ ‎①若m,n,p,q∈N*,且m+n=p+q,则am·an=ap·aq;‎ ‎②an=am·qn-m;‎ ‎③Sm,S2m-Sm,S3m-S2m,…(Sm≠0)成等比数列.‎ ‎3.数列求和 ‎(1)分组转化求和:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并.‎ ‎(2)错位相减法:主要用于求数列{an·bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列.‎ ‎(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中{an}是各项均不为零的等差数列,c为常数)的数列.‎ 热点题型 热点一 等差(比)数列的性质 ‎【例1】(1)(2018·南昌联考)等比数列中,若,,则等于( )‎ A.‎-4‎ B.4 C.‎±4‎ D.‎‎17‎‎2‎ ‎(2)(2017·北京海淀区质检)已知数列{an}的前n项和为Sn,且满足Sn=2an-2,若数列{bn}满足bn=10-log2an,则使数列{bn}的前n项和取最大值时的n的值为________.‎ 解析 (1)∵数列为等比数列,,,‎ ‎∴,即,∴,‎ 则.故选B.‎ ‎(2)∵Sn=2an-2,∴n=1时,a1=2a1-2,解得a1=2.‎ 当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2),∴an=2an-1.‎ ‎∴数列{an}是公比与首项都为2的等比数列,∴an=2n.‎ ‎∴bn=10-log2an=10-n.由bn=10-n≥0,解得n≤10.‎ ‎∴使数列{bn}的前n项和取最大值时的n的值为9或10.‎ 答案 (1) B  (2)9或10‎ 探究提高 1.利用等差(比)性质求解的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.‎ ‎2.活用函数性质:数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.‎ ‎【训练1】 (1)设等差数列{an}的公差为d,若数列{2a1an}为递减数列,则( )‎ A.d>0 B.d0 D.a1d

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料