专题09 三角形
一、选择题
1.(2017重庆A卷第8题)若△ABC~△DEF,相似比为3:2,则对应高的比为( )
A.3:2 B.3:5 C.9:4 D.4:9
【答案】A.
【解析】
试题解析:∵△ABC~△DEF,相似比为3:2,
∴对应高的比为:3:2.
故选A.
考点:相似三角形的性质.
2. (2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为( )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A.5.1米 B.6.3米 C.7.1米 D.9.2米
【答案】A.
【解析】
试题解析:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,
∵CE∥AP,
∴DP⊥AP,
∴四边形CEPQ为矩形,
∴CE=PQ=2,CQ=PE,
∵i=,
∴设CQ=4x、BQ=3x,
由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,
解得:x=2或x=﹣2(舍),
则CQ=PE=8,BQ=6,
∴DP=DE+PE=11,
在Rt△ADP中,∵AP=≈13.1,
∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,
故选A.
考点:解直角三角形的应用.
3.(2017甘肃庆阳第6题)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为( )
A.115° B.120° C.135° D.145°
【答案】C.
【解析】
试题解析:如图,
由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,
∵直尺的两边互相平行,
∴∠2=∠3=135°.
故选C.
考点:平行线的性质;余角和补角.
4. (2017甘肃庆阳第8题) 已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )
A.2a+2b-2c B.2a+2b C.2c D.0
【答案】D
【解析】
试题解析:∵a、b、c为△ABC的三条边长,
∴a+b-c>0,c-a-b<0,
∴原式=a+b-c+(c-a-b)
=0.
故选D.
考点:三角形三边关系.
5.(2017广西贵港第11题)如图,在中, ,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值是 ( )
A. B. C. D.
【答案】B
【解析】
试题解析:如图连接PC.
在Rt△ABC中,∵∠A=30°,BC=2,
∴AB=4,
根据旋转不变性可知,A′B′=AB=4,
∴A′P=PB′,
∴PC=A′B′=2,
∵CM=BM=1,
又∵PM≤PC+CM,即PM≤3,
∴PM的最大值为3(此时P、C、M共线).
故选B.
考点:旋转的性质.
6.(2017湖北武汉第10题)如图,在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )
A.4 B.5 C. 6 D.7
【答案】C
【解析】
试题解析:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;
②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;
③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;
④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;
⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;
⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.
故选C.
考点:画等腰三角形.
7.(2017江苏无锡第10题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )
A.2 B. C. D.
【答案】D.
【解析】
试题解析:如图连接BE交AD于O,作AH⊥BC于H.
在Rt△ABC中,∵AC=4,AB=3,
∴BC==5,
∵CD=DB,
∴AD=DC=DB=,
∵•BC•AH=•AB•AC,
∴AH=,
∵AE=AB,DE=DB=DC,
∴AD垂直平分线段BE,△BCE是直角三角形,
∵•AD•BO=•BD•AH,
∴OB=,
∴BE=2OB=,
在Rt△BCE中,EC= .
故选D.
考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.
8.(2017甘肃兰州第3题)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于( )
A. B. C. D.
【答案】C.
【解析】
试题解析:如图,在Rt△ABC中,∵∠ACB=90°,AB=130m,BC=50m,
∴AC==120m,
∴tan∠BAC=.
故选C.
考点:解直角三角形的应用﹣坡度坡角问题.
9. (2017甘肃兰州第13题)如图,小明为了测量一凉亭的高度(顶端到水平地面的距离),在凉亭的旁边放置一个与凉亭台阶等高的台阶(米,三点共线),把一面镜子水平放置在平台上的点处,测得米,然后沿直线后退到点处,这时恰好在镜子里看到凉亭的顶
端,测得米,小明身高米,则凉亭的高度约为( )
A.米 B.米 C.米 D.10米
【答案】A.
【解析】
试题解析:由题意∠AGC=∠FGE,∵∠ACG=∠FEG=90°,
∴△ACG∽△FEG,
∴
∴
∴AC=8,
∴AB=AC+BC=8+0.5=8.5米.
故选A.
点:相似三角形的应用.
10.(2017贵州黔东南州第2题)如图,∠ACD=120°,∠B=20°,则∠A的度数是( )
A.120° B.90° C.100° D.30°
【答案】C.
【解析】
试题解析:∠A=∠ACD﹣∠B
=120°﹣20°
=100°,
故选:C.
考点:三角形的外角性质.
11.(2017山东烟台第12题)如图,数学实践活动小组要测量学校附近楼房的高度,在水平底面处安置侧倾器得楼房顶部点的仰角为,向前走20米到达处,测得点的仰角为.已知侧倾器的高度为1.6米,则楼房的高度约为( )
(结果精确到0.1米,)
A.米 B.米 C.米 D.米
【答案】C.
【解析】
试题解析:过B作BF⊥CD于F,
∴AB=A′B′=CF=1.6米,
在Rt△DFB′中,B′F=,
在Rt△DFB中,BF=DF,
∵BB′=AA′=20,
∴BF﹣B′F=DF﹣=20,
∴DF≈34.1米,
∴CD=DF+CF=35.7米,
答:楼房CD的高度约为35.7米,
故选C.
考点:解直角三角形的应用﹣仰角俯角问题.
12.(2017四川泸州第10题)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=,其中p=;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S=,若一个三角形的三边长分别为2,3,4,则其面积是( )
A. B. C. D.
【答案】B.
考点:二次根式的应用.
13.(2017浙江嘉兴第2题)长度分别为,,的三条线段能组成一个三角形,的值可以是( )
A. B. C. D.
【答案】C.
【解析】
试题解析:由三角形三边关系定理得7-2<x<7+2,即5<x<9.
因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.
4,5,9都不符合不等式5<x<9,只有6符合不等式,
故选C.
考点:三角形的三边关系.
二、填空题
1.(2017浙江宁波第16题)如图,一名滑雪运动员沿着倾斜角为的斜坡,从滑行至,已知米,则这名滑雪运动员的高度下降了 米.(参考数据:,,)
【答案】280.
【解析】
试题分析:在RtΔABC中,sin34°=
∴AC=AB×sin34°=500×0.56=280米.
考点:解直角三角形的应用.
2.(2017甘肃庆阳第16题)如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.
【答案】cm.
【解析】
试题解析:如图,折痕为GH,
由勾股定理得:AB==10cm,
由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,
∴∠AGH=90°,
∵∠A=∠A,∠AGH=∠C=90°,
∴△ACB∽△AGH,
∴,
∴,
∴GH=cm.
考点:翻折变换
3.(2017广西贵港第16题)如图,点 在等边的内部,且,将线段绕点顺时针旋转得到,连接,则的值为 .
【答案】
【解析】
试题解析:连接PP′,如图,
∵线段PC绕点C顺时针旋转60°得到P'C,
∴CP=CP′=6,∠PCP′=60°,
∴△CPP′为等边三角形,
∴PP′=PC=6,
∵△ABC为等边三角形,
∴CB=CA,∠ACB=60°,
∴∠PCB=∠P′CA,
在△PCB和△P′CA中
∴△PCB≌△P′CA,
∴PB=P′A=10,
∵62+82=102,
∴PP′2+AP2=P′A2,
∴△APP′为直角三角形,∠APP′=90°,
∴sin∠PAP′=.
考点:旋转的性质;等边三角形的性质;解直角三角形.
4.(2017贵州安顺第13题)三角形三边长分别为3,4,5,那么最长边上的中线长等于 .
【答案】2.5
【解析】
试题解析:∵32+42=25=52,
∴该三角形是直角三角形,
∴×5=2.5.
考点:勾股定理的逆定理;直角三角形斜边上的中线.
5.(2017湖北武汉第15题)如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为 .
【答案】7.
【解析】
试题解析:∵AB=AC,
∴可把△AEC绕点A顺时针旋转120°得到△AE′B,如图,
∴BE′=EC=8,AE′=AE,∠E′AB=∠EAC,
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠EAC=60°,
∴∠E′AD=∠E′AB+∠BAD=60°,
在△E′AD和△EAD中
∴△E′AD≌△EAD(SAS),
∴E′D=ED,
过E′作EF⊥BD于点F,
∵AB=AC,∠BAC=120°,
∴∠ABC=∠C=∠E′BA=30°,
∴∠E′BF=60°,
∴∠BE′F=30°,
∴BF=BE′=4,E′F=4
,
∵BD=5,
∴FD=BD-BF=1,
在Rt△E′FD中,由勾股定理可得E′D=,
∴DE=7.
考点:1.含30度角的直角三角形;2.等腰三角形的性质.
6.(2017湖南怀化第15题)如图,,,请你添加一个适当的条件: ,使得.
【答案】CE=BC.本题答案不唯一.
【解析】
试题解析:添加条件是:CE=BC,
在△ABC与△DEC中,,
∴△ABC≌△DEC.
故答案为:CE=BC.本题答案不唯一.
点:全等三角形的判定.
7.(2017江苏无锡第18题)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于 .
【答案】3.
【解析】
试题解析:平移CD到C′D′交AB于O′,如图所示,
则∠BO′D′=∠BOD,
∴tan∠BOD=tan∠BO′D′,
设每个小正方形的边长为a,
则O′B=,O′D′=,BD′=3a,
作BE⊥O′D′于点E,
则BE=,
∴O′E=,
∴tanBO′E=,
∴tan∠BOD=3.
考点:解直角三角形.
8.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.
【答案】120°.
【解析】
试题解析:由三角形的外角的性质可知,∠1=90°+30°=120°.
考点:三角形的外角性质;三角形内角和定理.
9.(2017甘肃兰州第17题)如图,四边形与四边形相似,位似中心点是,,则 .
【答案】
【解析】
试题解析:如图所示:
∵四边形ABCD与四边形EFGH位似,
∴△OEF∽△OAB,△OFG∽△OBC,
∴,
∴.
考点:位似变换.
10.(2017贵州黔东南州第12题)如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件 使得△ABC≌△DEF.
【答案】∠A=∠D.
【解析】
试题解析:添加∠A=∠D.理由如下:
∵FB=CE,
∴BC=EF.
又∵AC∥DF,
∴∠ACB=∠DFE.
∴在△ABC与△DEF中,
,
∴△ABC≌△DEF(AAS).
考点:全等三角形的判定.
11.(2017山东烟台第14题)在中,,,,则 .
【答案】.
【解析】
试题解析:∵sinA=,
∴∠A=60°,
∴sin=sin30°=.
考点:特殊角的三角函数值.
12. (2017山东烟台第16题)如图,在平面直角坐标系中,每个小方格的边长均为1.与是以原点为位似中心的位似图形,且相似比为,点都在格点上,则点的坐标是 .
【答案】(﹣2,)
【解析】
试题解析:由题意得:△A′OB′与△AOB的相似比为2:3,
又∵B(3,﹣2)
∴B′的坐标是[3×,﹣2×],即B′的坐标是(﹣2,)
考点:位似变换;坐标与图形性质.
13.(2017四川泸州第16题)在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为 cm.
【答案】4.
【解析】
试题解析:连接AO并延长,交BC于H,
由勾股定理得,DE=,
∵BD和CE分别是边AC、AB上的中线,
∴BC=2DE=4,O是△ABC的重心,
∴AH是中线,又BD⊥CE,
∴OH=BC=2,
∵O是△ABC的重心,
∴AO=2OH=4.
考点:1.三角形的重心;2.勾股定理.
14.(2017四川自贡第14题)在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为 .
【答案】1.
【解析】
试题解析:∵MN∥BC,
∴△AMN∽△ABC,
∴,即,
∴MN=1.
考点:相似三角形的判定与性质.
15.(2017新疆建设兵团第15题)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:
①∠ABC=∠ADC;
②AC与BD相互平分;
③AC,BD分别平分四边形ABCD的两组对角;
④四边形ABCD的面积S=AC•BD.
正确的是 (填写所有正确结论的序号)
【答案】①④
【解析】
试题解析:①在△ABC和△ADC中,
∵,
∴△ABC≌△ADC(SSS),
∴∠ABC=∠ADC,
故①结论正确;
③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,
而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;
故③结论不正确;
④∵AC⊥BD,
∴四边形ABCD的面积S=S△ABD+S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.
故④结论正确;
所以正确的有:①④
考点:全等三角形的判定与性质;线段垂直平分线的性质.
16.(2017江苏徐州第13题)中,点分别是的中点,,则 .
【答案】14.
【解析】
试题解析:∵D,E分别是△ABC的边AC和AC的中点,
∴DE是△ABC的中位线,
∵DE=7,
∴BC=2DE=14.
考点:三角形中位线定理.
17. (2017江苏徐州第18题)如图,已知,以为直角边作等腰直角三角形.再以为直角边作等腰直角三角形,如此下去,则线段的长度为 .
【答案】.
【解析】
试题解析:∵△OBA1为等腰直角三角形,OB=1,
∴AA1=OA=1,OA1=OB=;
∵△OA1A2为等腰直角三角形,
∴A1A2=OA1=,OA2=OA1=2;
∵△OA2A3为等腰直角三角形,
∴A2A3=OA2=2,OA3=OA2=2;
∵△OA3A4为等腰直角三角形,
∴A3A4=OA3=2,OA4=OA3=4.
∵△OA4A5为等腰直角三角形,
∴A4A5=OA4=4,OA5=OA4=4,
∵△OA5A6为等腰直角三角形,
∴A5A6=OA5=4,OA6=OA5=8.
∴OAn的长度为.
考点:等腰直角三角形.
18.(2017浙江嘉兴第15题)如图,把个边长为1的正方形拼接成一排,求得,
,,计算 ,……按此规律,写出 (用含的代数式表示).
【答案】,.
【解析】
试题解析:作CH⊥BA4于H,
由勾股定理得,BA4=,A4C=,
△BA4C的面积=4-2-=,
∴××CH=,
解得,CH=,
则A4H==,
∴tan∠BA4C==,
1=12-1+1,
3=22-2+1,
7=32-3+1,
∴tan∠BAnC=.
考点:1.解直角三角形;2.勾股定理;3.正方形的性质.
三、解答题
1.(2017浙江衢州第23题)问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。
类比研究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设,,,请探索,,满足的等量关系。
【答案】(1)全等;证明见解析;(2)是,理由见解析;(3)c2=a2+ab+b2.
试题解析: (1)△ABD≌△BCE≌△CAF;理由如下:
∵△ABC是正三角形,
∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
∵∠ABD=∠ABC﹣∠2,∠BCE=∠ACB﹣∠3,∠2=∠3,
∴∠ABD=∠BCE,
在△ABD和△BCE中,
,
∴△ABD≌△BCE(ASA);
(2)△DEF是正三角形;理由如下:
∵△ABD≌△BCE≌△CAF,
∴∠ADB=∠BEC=∠CFA,
∴∠FDE=∠DEF=∠EFD,
∴△DEF是正三角形;
(3)作AG⊥BD于G,如图所示:
∵△DEF是正三角形,
∴∠ADG=60°,
在Rt△ADG中,DG=b,AG=b,
在Rt△ABG中,c2=(a+b)2+(b)2,
∴c2=a2+ab+b2.
考点:1.全等三角形的判定与性质;2.勾股定理.
2.(2017山东德州第21题)
如图所示,某公路检测中心在一事故多发地带安装了一个测速仪,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用的时间为0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之间的距离;(保留根号)
(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:,)
【答案】(1)(10+10)m;(2)超速.
【解析】
试题分析:(1)利用∠B=30°,∠C=45°,AD=10,求出BD=10,DC=10,从而得出BC=10+10
(2)利用,,求出BC27,再求出v=108千米/小时>80千米/小时,故超速。
试题解析:(1)如图,过点A作AD⊥BC于点D,则AD=10m
∵在RtΔACD中,∠C=45°
∴RtΔACD是等腰直角三角形
∴CD=AD=10m
在RtΔABD中,tanB=
∵∠B=30°
∴
∴BD=10m
∴BC=BD+DC=(10+10)m
(2)这辆汽车超速.理由如下.
由(1)知BC=(10+10)m,又
∴BC=27m
∴汽车速度v==30(m/s)
又30 m/s=108km/h,此地限速为80 km/h
∵108>80
∴这辆汽车超速.
考点:三角函数的应用
3.(2017重庆A卷24题)在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.
(1)如图1,若AB=3,BC=5,求AC的长;
(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.
【答案】(1);(2)证明见解析.
【解析】
试题分析:(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可求出AC的长;
(2)延长EF到点G,使得FG=EF,证ΔBMD≌ΔANC得AC=BD,再证ΔBFG≌ΔCFE得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.
试题解析:(1)∵∠ABM=45°,AM⊥BM,
∴AM=BM=ABcos45°=3×=3,
则CM=BC﹣BM=5﹣2=2,
∴AC=;
(2)延长EF到点G,使得FG=EF,连接BG.
由DM=MC,∠BMD=∠AMC,BM=AM,
∴△BMD≌△AMC(SAS),
∴AC=BD,
又CE=AC,
因此BD=CE,
由BF=FC,∠BFG=∠EFC,FG=FE,
∴△BFG≌△CFE,
故BG=CE,∠G=∠E,
所以BD=BG=CE,
因此∠BDG=∠G=∠E.
考点:1.全等三角形的判定与性质;2.勾股定理.
4. (2017甘肃庆阳第21题)如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).
【答案】作图见解析
【解析】
试题分析:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.
试题解析:如图,△ABC的一条中位线EF如图所示,
方法:作线段AB的垂直平分线得到AB的中点E,作AC的垂直平分线得到线段AC的中点F.线段EF即为所求.
考点:作图—复杂作图;三角形中位线定理.
5. (2017甘肃庆阳第22题)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
【答案】观景亭D到南滨河路AC的距离约为248米.
【解析】
试题分析:过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.
试题解析:过点D作DE⊥AC,垂足为E,设BE=x,
在Rt△DEB中,tan∠DBE=,
∵∠DBC=65°,
∴DE=xtan65°.
又∵∠DAC=45°,
∴AE=DE.
∴132+x=xtan65°,
∴解得x≈115.8,
∴DE≈248(米).
∴观景亭D到南滨河路AC的距离约为248米.
考点:解直角三角形的应用
6.(2017湖北武汉第18题)如图,点在一条直线上,,.写出与之间的关系,并证明你的结论.
【答案】证明见解析:
【解析】
试题分析:通过证明ΔCDF≌ΔABE,即可得出结论
试题解析:CD与AB之间的关系是:CD=AB,且CD∥AB
证明:∵CE=BF,∴CF=BE
在ΔCDF和ΔBAE中
∴ΔCDF≌ΔBAE
∴CD=BA,∠C=∠B
∴CD∥BA
考点:全等三角形的判定与性质.
7. (2017湖南怀化第6题)如图,点在一条直线上,,.写出与之间的关系,并证明你的结论.
【答案】证明见解析:
【解析】
试题分析:通过证明ΔCDF≌ΔABE,即可得出结论
试题解析:CD与AB之间的关系是:CD=AB,且CD∥AB
证明:∵CE=BF,∴CF=BE
在ΔCDF和ΔBAE中
∴ΔCDF≌ΔBAE
∴CD=BA,∠C=∠B
∴CD∥BA
考点:全等三角形的判定与性质.
8.(2017江苏无锡第24题)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):
(1)作△ABC的外心O;
(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.
【答案】(1)作图见解析;(2)作图见解析.
【解析】
试题分析:(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;
(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.
试题解析:(1)如图所示:点O即为所求.
(2)如图所示:六边形DEFGHI即为所求正六边形.
考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.
9.(2017贵州黔东南州第22题)如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)
(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
【答案】学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.
【解析】
试题分析:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,根据锐角三角函数的定义求出DE、CE、CE′的长,进而可得出结论.
试题解析:假设点D移到D′的位置时,恰好∠α=39°,过点D作DE⊥AC于点E,作D′E′⊥AC于点E′,
∵CD=12米,∠DCE=60°,
∴DE=CD•sin60°=12×=6米,CE=CD•cos60°=12×=6米.
∵DE⊥AC,D′E′⊥AC,DD′∥CE′,
∴四边形DEE′D′是矩形,
∴DE=D′E′=6米.
∵∠D′CE′=39°,
∴CE′=≈12.8,
∴EE′=CE′﹣CE=12.8﹣6=6.8(米).
答:学校至少要把坡顶D向后水平移动6.8米才能保证教学楼的安全.
考点:解直角三角形的应用﹣坡度坡角问题.
10.(2017山东烟台第23题)【操作发现】
(1)如图1,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接,.
①求的度数;
②与相等吗?请说明理由;
【类比探究】
(2)如图2,为等腰直角三角形,,先将三角板的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接,.请直接写出探究结果:
①的度数;
②线段之间的数量关系.
【答案】(1)①120°;②DE=EF;理由见解析;(2)①90°;②AE2+DB2=DE2.理由见解析.
【解析】
试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.
试题解析:(1)①∵△ABC是等边三角形,
∴AC=BC,∠BAC=∠B=60°,
∵∠DCF=60°,
∴∠ACF=∠BCD,
在△ACF和△BCD中,
,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=60°,
∴∠EAF=∠BAC+∠CAF=120°;
②DE=EF;理由如下:
∵∠DCF=60°,∠DCE=30°,
∴∠FCE=60°﹣30°=30°,
∴∠DCE=∠FCE,
在△DCE和△FCE中,
,
∴△DCE≌△FCE(SAS),
∴DE=EF;
(2)①∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,∠BAC=∠B=45°,
∵∠DCF=90°,
∴∠ACF=∠BCD,
在△ACF和△BCD中,
,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=45°,AF=DB,
∴∠EAF=∠BAC+∠CAF=90°;
②AE2+DB2=DE2,理由如下:
∵∠DCF=90°,∠DCE=45°,
∴∠FCE=90°﹣45°=45°,
∴∠DCE=∠FCE,
在△DCE和△FCE中,
,
∴△DCE≌△FCE(SAS),
∴DE=EF,
在Rt△AEF中,AE2+AF2=EF2,
又∵AF=DB,
∴AE2+DB2=DE2.
考点:几何变换综合题.
11.(2017四川泸州第18题)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.
【答案】证明见解析.
【解析】
试题分析:欲证明AB=DE,只要证明△ABC≌△DEF即可.
考点:全等三角形的判定与性质.
12. (2017四川泸州第22题)如图,海中一渔船在A处且与小岛C相距70nmile,若该渔船由西向东航行30nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.
【答案】渔船此时与C岛之间的距离为50海里.
【解析】
试题分析:过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,解直角三角形即可得到结论.
试题解析:过点C作CD⊥AB于点D,由题意得:
∠BCD=30°,设BC=x,则:
在Rt△BCD中,BD=BC•sin30°=x,CD=BC•cos30°=x;
∴AD=30+x,
∵AD2+CD2=AC2,即:(30+x)2+(x)2=702,
解之得:x=50(负值舍去),
答:渔船此时与C岛之间的距离为50海里.
考点:1.解直角三角形的应用-方向角问题;2.勾股定理的应用.
13.(2017四川宜宾第18题) 如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.
【答案】证明见解析
【解析】
试题分析:欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.
试题解析:∵AC∥DF,
∴∠ACB=∠F,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(AAS);
∴BC=EF,
∴BC﹣CE=EF﹣CE,
即BE=CF.
考点:全等三角形的判定与性质.
14. (2017四川宜宾第21题)如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度(结果保留根号).
【答案】河的宽度为50(+1)m.
【解析】
试题分析:直接过点A作AD⊥BC于点D,利用tan30°=,进而得出答案.
试题解析:过点A作AD⊥BC于点D,
∵∠β=45°,∠ADC=90°,
∴AD=DC,
设AD=DC=xm,
则tan30°=,
解得:x=50(+1),
答:河的宽度为50(+1)m.
考点:解直角三角形的应用.
15.(2017新疆建设兵团第19题)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)
【答案】乙建筑物的高度为30m;甲建筑物的高度为(30﹣30)m.
【解析】
试题分析:在Rt△BCD中可求得CD的长,即求得乙的高度,过A作F⊥CD于点F,在Rt△ADF中可求得DF,则可求得CF的长,即可求得甲的高度.
试题解析:如图,过A作AF⊥CD于点F,
在Rt△BCD中,∠DBC=60°,BC=30m,
∵=tan∠DBC,
∴CD=BC•tan60°=30m,
∴乙建筑物的高度为30m;
在Rt△AFD中,∠DAF=45°,
∴DF=AF=BC=30m,
∴AB=CF=CD﹣DF=(30﹣30)m,
∴甲建筑物的高度为(30﹣30)m.
考点:解直角三角形的应用﹣仰角俯角问题.
16.(2017江苏徐州第25题)如图,已知,垂足为,将线段绕点按逆时针方向旋转,得到线段,连接.
(1)线段 ;
(2)求线段的长度.
【答案】(1)4;(2).
【解析】
(2)作DE⊥BC于点E.
∵△ACD是等边三角形,
∴∠ACD=60°,
又∵AC⊥BC,
∴∠DCE=∠ACB-∠ACD=90°-60°=30°,
∴Rt△CDE中,DE=DC=2,
CE=DC•cos30°=4×,
∴BE=BC-CE=3-2=.
∴Rt△BDE中,BD=.
考点:旋转的性质.
17.(2017浙江嘉兴第22题)如图是小强洗漱时的侧面示意图,洗漱台(矩形)靠墙摆放,高,宽,小强身高,下半身,洗漱时下半身与地面成(),身体前倾成(),脚与洗漱台距离(点,,,在同一直线上).
(1)此时小强头部点与地面相距多少?
(2)小强希望他的头部恰好在洗漱盆的中点的正上方,他应向前或后退多少?
(,,,结果精确到)
【答案】(1) 小强头部E点与地面DK相距约为144.5cm.(2) 他应向前10.5cm.
【解析】
试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
试题解析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=166,FG=100,
∴EF=66,
∵∠FK=80°,
∴FN=100•sin80°≈98,
∵∠EFG=125°,
∴∠EFM=180°-125°-10°=45°,
∴FM=66•cos45°=33≈46.53,
∴MN=FN+FM≈114.5,
∴此时小强头部E点与地面DK相距约为144.5cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.
∵AB=48,O为AB中点,
∴AO=BO=24,
∵EM=66•sin45°≈46.53,
∴PH≈46.53,
∵GN=100•cos80°≈18,CG=15,
∴OH=24+15+18=57,OP=OH-PH=57-46.53=10.47≈10.5,
∴他应向前10.5cm.
考点:解直角三角形的应用.