专题10:四边形
一、选择题
1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )
A. 6 B. 12 C. 16 D.18
【答案】B.
【解析】
试题分析:设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12.故选B.
考点:多边形的内角与外角
2. (2017河南第7题)如图,在中,对角线,相交于点,添加下列条件不能判定是菱形的只有( )
A. B. C. D.
【答案】C.
考点:菱形的判定.
3. (2017湖南长沙第10题)如图,菱形的对角线的长分别为,则这个菱形的周长为( )
A. B. C. D.
【答案】D
【解析】
试题分析:根据菱形的对角线互相垂直,可知OA=3,OB=4,根据勾股定理可知AB=5,所以菱形的周长为4×5=20.
故选:D
考点:菱形的性质
4. (2017湖南长沙第12题)如图,将正方形折叠,使顶点与边上的一点重合(不与端点重合),折痕交于点,交于点,边折叠后与边交于点,设正方形的周长为,的周长为,则的值为( )
A. B. C. D.随点位置的变化而变化
【答案】B
【解析】
试题分析:设正方形ABCD的边长为2a,正方形的周长为m=8a,
设CM=x,DE=y,则DM=2a-x,EM=2a-y,
∵∠EMG=90°,
∴∠DME+∠CMG=90°.
∵∠DME+∠DEM=90°,
∴∠DEM=∠CMG,
又∵∠D=∠C=90°△DEM∽△CMG,
∴,即
∴CG=
△CMG的周长为CM+CG+MG=
在Rt△DEM中,DM2+DE2=EM2
即(2a-x)2+y2=(2a-y)2
整理得4ax-x2=4ay
∴CM+MG+CG==n.
所以
故选:B.
考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理
5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )
A.四边形 B.五边形 C.六边形 D.八边形
【答案】C
【解析】
试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n-2)·180°=720°,解得n=6,故是六边形.
故选:C
考点:多边形的内外角和
6. (2017山东临沂第12题)在中,点是边上的点(与、两点不重合),过点作,,分别交,于、两点,下列说法正确的是( )
A.若,则四边形是矩形
B.若垂直平分,则四边形是矩形
C.若,则四边形是菱形
D.若平分,则四边形是菱形
【答案】D
【解析】
试题分析:根据题意可知:,,可得四边形AEDF是平行四边形.
若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;
若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;
若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;
若AD平分∠BAC,则四边形AEDF是菱形;正确.
故选:D
考点:特殊平行四边形的判定
7. (2017山东青岛第7题)如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,,AC=2,BD=4,则AE的长为( )
A. B. C. D.
【答案】D
考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度
8. (2017四川泸州第11题)如图,在矩形中,点是边的中点,,垂足为,则的值是 ( )
A. B. C. D.
【答案】A.
【解析】
试题分析:由AD∥BC可得△ADF∽△EBF,根据相似三角形的性质可得 ,因点是边的中点且AD=BC,所以=2,设EF=x,可得AF=2x,在Rt△ABE中,由射影定理可得BF= ,再由=2可得DF=2,在Rt△DEF中,= ,故选A.
9. (2017江苏苏州第10题)如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为
A. B. C. D.
【答案】A.
【解析】
试题分析:作
在菱形中,,,是的中点
是的中点,
故答案选A.
考点:平行四边形的面积,三角函数.
10.(2017江苏苏州第7题)如图,在正五边形中,连接,则的度数为
A. B. C. D.
【答案】B.
【解析】
试题分析:= 故答案选B.
考点:多边形的外角,等腰三角形的两底角相等
11.(2017浙江台州第10题) 如图,矩形的四个顶点分别在菱形的四条边上,,将分别沿折叠,当重叠部分为菱形且面积是菱形面积的时,则为 ( )
A. B.2 C. D.4
【答案】A
考点:1、菱形的性质,2、翻折变换(折叠问题)
二、填空题
1.(2017天津第17题)如图,正方形和正方形的边长分别为3和1,点分别在边上,为的中点,连接,则的长为 .
【答案】.
【解析】
试题分析:连结AC,根据正方形的性质可得A、E、C三点共线,连结FG交AC于点M,因正方形和正方形的边长分别为3和1,根据勾股定理可求得EC=FG=,AC=3,即可得AE=2,因为的中点,可得PE=AP=,再由正方形的性质可得GM=EM= ,FG垂直于AC,在Rt△PGM中,PM= ,由勾股定理即可求得PG=.
2.(2017福建第15题)两个完全相同的正五边形都有一边在直线上,且有一个公共顶点,其摆放方式如图所示,则等于 度.
【答案】108
【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.
3.(2017广东广州第16题)如图9,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:
①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是 .(填写所有正确结论的序号)
【答案】①③
【解析】
试题分析:如图,分别过点A、B作 于点N, 轴于点M
在 中,
是线段AB的三等分点,
是OA的中点,故①正确.
不是菱形.
故 和 不相似.
则②错误;
由①得,点G是AB的中点, 是 的中位线
是OB的三等分点,
解得:
四边形 是梯形
则③正确
,故④错误.
综上:①③正确.
考点: 平行四边形和相似三角形的综合运用
4.(2017广东广州第11题)如图6,四边形中,,则___________.
【答案】70°
【解析】
试题分析:两直线平行,同旁内角互补,可得:180°-110°=70°
考点:平行线的性质
5.(2017山东临沂第18题)在中,对角线,相交于点.若,,,则的面积是 .
【答案】24
【解析】
试题分析:作OE⊥CD于E,由平行四边形的性质得出OA=OC,OB=OD=BD=5,CD=AB=4,由sin∠BDC=,证出AC⊥CD,OC=3,AC=2OC=6,得出▱ABCD的面积=CD•AC=24.
故答案为:24.
考点:1、平行四边形的性质,2、三角函数,3、勾股定理
6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE、ED、BD,若∠BAD=58°,则∠EBD的度数为__________度.
【答案】32
【解析】
试题分析:如下图
由∠ABC=∠ADC=90°,E为对角线AC的中点,可知A,B,C,D四点共圆,圆心是E,直径AC然后根据圆周角定理由∠BAD=58°,得到∠BED=116°,然后根据等腰三角形的性质可求得∠EBD=32°.
故答案为:32.
考点:1、圆周角性质定理,2、等腰三角形性质
7.(2017山东滨州第16题)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F.若AD=8,AB=6,AE=4,则△EBF周长的大小为___________.
【答案】8.
【解析】由折叠的性质可得DH=EH,设AH=x,则DH=EH=8-x,在Rt△AEH中,根据勾股定理可得 ,解得x=3,即可得AH=3,EH=5;根据已知条件易证△AEH∽△
BFE,根据相似三角形的性质可得 ,即,解得BF= ,EF= ,所以△EBF的周长为2++=8.
8.(2017江苏宿迁第15题)如图,正方形的边长为,点在边上,且.若点在对角线上移动,则的最小值是 .
【答案】.
9.(2017辽宁沈阳第16题)如图,在矩形中,,将矩形绕点按顺时针方向旋转得到矩形,点落在矩形的边上,连接,则的长是 .
【答案】.
【解析】
试题分析:如图,过点C作MNBG,分别交BG、EF于点M、N,根据旋转的旋转可得AB=BG=EF=CD=5,AD=GF=3,在Rt△BCG中,根据勾股定理求得CG=4,再由,即可求得CM= ,在Rt△BCM中,根据勾股定理求得BM=
,根据已知条件和辅助线作法易知四边形BENMW为矩形,根据矩形的旋转可得BE=MN=3,BM=EN=,所以CN=MN-CM=3-=,在Rt△ECN中,根据勾股定理求得EC=.
考点:四边形与旋转的综合题.
10.(2017江苏苏州第18题)如图,在矩形中,将绕点按逆时针方向旋转一定角度后,的对应边交边于点.连接、,若,,,则 (结果保留根号).
【答案】.
【解析】
试题分析:连接AG,设DG=x,则
在 中, ,则
考点:旋转的性质 ,勾股定理 .
11. (2017山东菏泽第11题)菱形中,,其周长为,则菱形的面积为____.
【答案】18.
【解析】
试题分析:如图,连接BD,作DE⊥AB,已知菱形的周长为,根据菱形的性质可得AB=6;再由,即可判定△ABD是等边三角形;求得DE=,所以菱形的面积为:6×=18.
12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
【答案】5
考点:多边形的外角和
三、解答题
1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“
从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,
(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:,(____________+____________).
易知,,_____________=______________,______________=_____________.
可得.
【答案】 .
【解析】
试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可.
本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:
, ∴ , ∴ .
考点:矩形的性质,三角形面积计算.
2. (2017北京第22题)如图,在四边形中,为一条对角线,,为的中点,连接.
(1)求证:四边形为菱形;
(2)连接,若平分,求的长.
【答案】(1)证明见解析.(2).
【解析】
试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.
本题解析:(1)证明:∵E为AD中点,AD=2BC,∴BC=ED, ∵AD∥BC, ∴四边形ABCD是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE∴BE=ED, ∴四边形ABCD是菱形.
(2)∵AD∥BC,AC平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin∠ADB=,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT△ACD中,AD=2,CD=1,AC= .
考点:平行线性质,菱形判定,直角三角形斜边中线定理.
3. (2017天津第24题)将一个直角三角形纸片放置在平面直角坐标系中,点,点,点.是边上的一点(点不与点重合),沿着折叠该纸片,得点的对应点.
(1)如图①,当点在第一象限,且满足时,求点的坐标;
(2)如图②,当为中点时,求的长;
(3)当时,求点的坐标(直接写出结果即可).
【答案】(1)点A’的坐标为(,1);(2)1;(3)或 .
【解析】
试题分析:(1)因点,点,可得OA= ,OB=1,根据折叠的性质可得△A’OP≌△AOP,由全等三角形的性质可得OA’=OA=,在Rt△A’OB中,根据勾股定理求得的长,即可求得点A的坐标;(2)在Rt△AOB中,根据勾股定理求得AB=2,再证△BOP是等边三角形,从而得∠OPA =120°.在判定四边形OPA’B是平行四边形,根据平行四边形的性质即可得的长;
试题解析:(1)因点,点,
∴OA= ,OB=1.
根据题意,由折叠的性质可得△A’OP≌△AOP.
∴OA’=OA=,
由,得∠A’BO=90°.
在Rt△A’OB中,,
∴点A’的坐标为(,1).
(2) 在Rt△AOB中,OA= ,OB=1,
∴
∵当为中点,
∴AP=BP=1,OP=AB=1.
∴OP=OB=BP,
∴△BOP是等边三角形
∴∠BOP=∠BPO=60°,
∴∠OPA=180°-∠BPO=120°.
由(1)知,△A’OP≌△AOP,
∴∠OPA’=∠OPA=120°,P’A=PA=1,
又OB=PA’=1,
∴四边形OPA’B是平行四边形.
∴A’B=OP=1.
(3)或 .
4. (2017福建第24题)如图,矩形中,,分别是线段AC、BC上的点,且四边形为矩形.
(Ⅰ)若是等腰三角形时,求的长;
(Ⅱ)若,求的长.
【答案】(Ⅰ)AP的长为4或5或;(Ⅱ)CF=
【解析】
试题分析:(Ⅰ)分情况CP=CD、PD=PC、DP=DC讨论即可得;
(Ⅱ)连结PF、DE,记PF与DE的交点为O,连结OC,通过证明△ADP∽△CDF,从而得 ,由AP= ,从而可得CF= .
试题解析:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6, AC= =10;
要使△PCD是等腰三角形,有如下三种情况:
(1)当CP=CD时,CP=6,∴AP=AC-CP=4 ;
(2)当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP= ,即AP=5;
(3)当DP=DC时,过D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC= AD·DC= AC·DQ,∴DQ= ,∴CQ= ,∴PC=2CQ = ,∴AP=AC-PC= .
综上所述,若△PCD是等腰三角形,AP的长为4或5或;
(Ⅱ)连结PF、DE,记PF与DE的交点为O,连结OC,
∵四边形ABCD和PEFD都是矩形,∴∠ADC=∠PDF=90°,即∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC= ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF= PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,又∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,即∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴ ,∵AP= ,∴CF= .
5. (2017广东广州第24题)如图13,矩形的对角线,相交于点,关于的对称图形为.
(1)求证:四边形是菱形;
(2)连接,若,.
①求的值;
②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.
【答案】(1)详见解析;(2)① ②和 走完全程所需时间为
【解析】
(2)①连接 ,直线 分别交 于点 ,交 于点
关于 的对称图形为
在矩形 中, 为 的中点,且O为AC的中点
为 的中位线
同理可得: 为 的中点,
②过点P作 交 于点
由 运动到 所需的时间为3s
由①可得,
点O以 的速度从P到A所需的时间等于以 从M运动到A
即:
由O运动到P所需的时间就是OP+MA和最小.
如下图,当P运动到 ,即 时,所用时间最短.
在 中,设
解得:
和 走完全程所需时间为
考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置
6. (2017山东青岛第24题)(本小题满分12分)
已知:Rt△EFP和矩形ABCD如图①摆放(点P与点B重合),点F,B(P),C在同一条直线上,AB=EF=6cm,BC=FP=8cm,∠EFP=90°。如图②,△EFP从图①的位置出发,沿BC方向匀速运动,速度为1cm/s;EP与AB交于点G.同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s。过Q作QM⊥BD,垂足为H,交AD于M,连接AF,PQ,当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6),解答下列问题:
(1)当 t 为何值时,PQ∥BD?
(2)设五边形 AFPQM 的面积为 y(cm2),求 y 与 t 之间的函数关系式;
(3)在运动过程中,是否存在某一时刻 t,使?若存在,求出 t 的值;若不存在,请说明理由;
(4) 在运动过程中,是否存在某一时刻 t,使点M在PG的垂直平分线上?若存在,求出 t 的值;若不存在,请说明理由.
【答案】(1)t= ;(2) (3)t=2,9:8(4)t=
【解析】
试题分析:(1)利用△CPQ∽△CBD,列比例式求出t的值;
(2)利用△MDQ∽△CBD,得MD=(6-t),再利用,可求得函数的解析式;
(3)利用=9:8得方程求解;
(4)利用△PBG∽△PEF,得AG、AM,作MN⊥BC,构造矩形MNCD,则MN=6,PN=(8-t)-(6-t)=,然后根据AG2+AN2=PN2+MN2可列方程求解.
试题解析:(1)若PQ∥BD,则△CPQ∽△CBD,可得,即,解得t=;
(2)由∠MQD+∠CDB=∠CBD+∠CDB=90°,可得∠MQD=∠CBD,
又∠MDQ=∠C=90°,∴△MDQ∽△CBD ,
∴
即
解得MD=(6-t),
所以
=
=
即
(3)假使存在t,使
则,即
整理得,解得
答:当t=2,
(4)易证△PBG∽△PEF,
∴,即,∴
则
作MN⊥BC于N点,则四边形MNCD为矩形
所以MN=CD=6,CN=,故:PN=
若M在PG的垂直平分线上,则GM=PM,
所以,所以
即:
整理得:,解得。
考点:1、矩形,2、相似三角形,3、二次函数,4、运动型
7. (2017山东青岛第21题)(本小题满分8分)
已知:如图,在菱形ABCD 中,点E,O,F 分别是边AB,AC,AD的中点,连接CE、CF、OF.
(1)求证:△ BCE≌△DCF;
(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.
【答案】(1)证明见解析(2)四边形AEOF是正方形
【解析】
试题分析:(1)利用SAS证明△ BCE≌△DCF;
(2)先证明AEOF为菱形,当BC⊥AB,得∠BAD=90°,再利用知识点:有一个角是90°的菱形是正方形。
试题解析:(1)∵四边形ABCD为菱形
∴AB=BC=CD=DA,∠B=∠D
又E、F分别是AB、AD中点,∴BE=DF
∴△ABE≌△CDF(SAS)
考点:1、菱形,2、全等三角形,3、正方形
8. (2017山东滨州第22题)(本小题满分10分)
如图,在□ABCD中,以点A为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.
(1)根据以上尺规作图的过程,求证四边形ABEF是菱形;
(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.
【答案】(1)详见解析;(2)60°.
【解析】
试题分析:(1)由作图过程可知,AB=AF,AE平分∠BAD,即可得∠BAE=∠EAF.再由四边形ABCD为平行四边形,可得BC∥AD,根据平行线的性质可得∠AEB=∠EAF,所以∠BAE=∠AEB,根据等腰三角形的性质可得AB=BE,即可得BE=AF,所以四边形ABEF为平行四边形,根据一组邻边相等的平行四边形是菱形即可判定四边形ABEF为菱形;(2)连接BF,已知四边形ABEF为菱形,根据菱形的性质可得BF与AE互相垂直平分,∠BAE=∠FAE,OA=AE=.再由菱形ABEF的周长为16,可得AF=4.所以cos∠OAF==.即可得∠OAF=30°,所以∠BAF=60°.再由平行线的性质即可得∠C=∠BAD=60°.
试题解析:
(1)由作图过程可知,AB=AF,AE平分∠BAD.∴∠BAE=∠EAF.
∵四边形ABCD为平行四边形,∴BC∥AD.∴∠AEB=∠EAF.
∴∠BAE=∠AEB,∴AB=BE.∴BE=AF.∴四边形ABEF为平行四边形.
∴四边形ABEF为菱形.
(2)连接BF,
∵四边形ABEF为菱形,∴BF与AE互相垂直平分,∠BAE=∠FAE.
∴OA=AE=.∵菱形ABEF的周长为16,∴AF=4.
∴cos∠OAF==.∴∠OAF=30°,∴∠BAF=60°.
∵四边形ABCD为平行四边形,∴∠C=∠BAD=60°.
9. (2017山东日照第18题)如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.
(1)求证:△DCA≌△EAC;
(2)只需添加一个条件,即 ,可使四边形ABCD为矩形.请加以证明.
【答案】(1)详见解析;(2)AD=BC(答案不唯一).
试题分析:(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.
试题解析:
(1)证明:在△DCA和△EAC中,,
∴△DCA≌△EAC(SSS);
(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:
∵AB=DC,AD=BC,
∴四边形ABCD是平行四边形,
∵CE⊥AE,
∴∠E=90°,
由(1)得:△DCA≌△EAC,
∴∠D=∠E=90°,
∴四边形ABCD为矩形;
考点:矩形的判定;全等三角形的判定与性质.
10. (2017辽宁沈阳第18题)如图,在菱形中,过点做于点,做于点
,连接,
求证:(1);
(2)
【答案】详见解析.
【解析】
试题分析:(1)根据菱形的性质可得AD=CD,,再由,,可得,根据AAS即可判定;(2)已知菱形,根据菱形的性质可得AB=CB,再由,根据全等三角形的性质可得AE=CF,所以BE=BF,根据等腰三角形的性质即可得.
试题解析:
(1) ∵菱形,
∴AD=CD,
∵,
∴
∴
(2) ∵菱形,
∴AB=CB
∵
∴AE=CF
∴BE=BF
∴
考点:全等三角形的判定及性质;菱形的性质.
11. (2017辽宁沈阳第24题)四边形是边长为4的正方形,点在边所在的直线上,连接,以为边,作正方形(点,点在直线的同侧),连接
(1)如图1,当点与点重合时,请直接写出的长;
(2)如图2,当点在线段上时,
①求点到的距离
②求的长
(3)若,请直接写出此时的长.
【答案】(1)BF=4;(2)①点到的距离为3;②BF=;(3)AE=2+或AE=1.
【解析】
试题分析:(1)过点F作FMBA, 交BA的延长线于点M,根据勾股定理求得AC=,又因点与点重合,可得△AFM为等腰直角三角形且AF=,再由勾股定理求得AM=FM=4,在Rt△BFM中,由勾股定理即可求得BF=4;(2)①过点F作FHAD交AD的延长线于点H,根据已知条件易证,根据全等三角形的性质可得FH=ED,又因AD=4,AE=1,所以ED=AD-AE=4-1=3,即可求得FH=3,即点到的距离为3;②延长FH交BC的延长线于点K,求得FK和BK的长,在Rt△BFK中,根据勾股定理即可求得BF的长;(3)分点E在线段AD的延长线上和点E在线段DA的延长线上两种情况求解即可.
试题解析:
(1)BF=4;
(2) 如图,
①过点F作FHAD交AD的延长线于点H,
∵四边形CEFG是正方形
∴EC=EF,∠FEC=90°
∴∠DEC+∠FEH=90°,
又因四边形是正方形
∴∠ADC=90°
∴∠DEC+∠ECD=90°,
∴∠ECD=∠FEH
又∵∠EDC=∠FHE=90°,
∴
∴FH=ED
∵AD=4,AE=1,
∴ED=AD-AE=4-1=3,
∴FH=3,
即点到的距离为3.
②延长FH交BC的延长线于点K,
∴∠DHK=∠HDC=∠DCK =90°,
∴四边形CDHK为矩形,
∴HK=CD=4,
∴FK=FH+HK=3+4=7
∵
∴EH=CD=AD=4
∴AE=DH=CK=1
∴BK=BC+CK=4+1=5,
在Rt△BFK中,BF=
(3)AE=2+或AE=1.
考点:四边形综合题.
12. (2017江苏宿迁第26题)(本题满分10分)
如图,在矩形纸片中,已知,,点在边上移动,连接,将多边形沿直线折叠,得到多边形,点、的对应点分别为点、.
(1)当恰好经过点时(如图1),求线段的长;
(2)若分别交边、于点、,且(如图2),求的面积;
(3)在点从点移动到点的过程中,求点运动的路径长.
【答案】(1) ;(2);(3).
【解析】
试题解析:
(1)如图1,由折叠得,,,,,
由勾股定理得,,
所以,
因为,所以 ,
又因,所以
又,所以
所以,即,所以
(2)如图2-1,连接AC,因为∠BAC=,所以∠BAC=60°,
故∠DAC=30°,又,所以,
由折叠得,,所以,
所以,即,,
因为,所以;
(3) 如图2-2,连接A,则,
所以点的运动路径是以点A为圆心,以AC为半径的圆弧;当点E运动到点D时,点恰好在CD的延长线上,此时,
所以点的运动路径长是.
13. (2017山东菏泽第23题)正方形的边长为,点分别是线段上的动点,连接并延长,交边于,过作,垂足为,交边于点.
(1)如图1,若点与点重合,求证:;
(2)如图2,若点从点出发,以的速度沿向点运动,同时点从点出发,以的速度沿向点运动,运动时间为.
①设,求关于t的函数表达式;
②当时,连接,求的长.
【答案】(1)详见解析;(2)①;②5.
【解析】
试题分析:(1)根据已知条件易证△ABF≌△NAD,由全等三角形的性质即可得;(2)
先证△ABF∽△NAD,根据全等三角形的性质求得;(3)利用△ABF∽△NAD,求得t=2,根据(2)的函数解析式求得BF的长,再由勾股定理即可得FN的长.
试题解析:
【解】
(1)∵正方形
∴AD=AB,∠DAN=∠FBA=90°
∵
∴∠NAH+∠ANH=90°
∵∠NDA+∠ANH=90°
∴∠NAH=∠NDA
∴△ABF≌△NAD
∴
(2)①∵正方形
∴AD∥BF
∴∠ADE=∠FBE
∵∠AED=∠BEF
∴△EBF∽△EAD
∴
∵正方形
∴AD=DC=CB=6
∴BD=
∵点从点出发,以的速度沿向点运动,运动时间为.
∴BE=,DE=
∴
∴
②当时,连接,求的长.
∵正方形
∴∠MAN=∠FBA=90°
∵
∴∠NAH+∠ANH=90°
∵∠NMA+∠ANH=90°
∴∠NAH=∠NMA
∴△ABF∽△NAD
∴
∵,AB=6
∴AN=2,BN=4
∴
∴t=2
把t=2代入,得y=3,即BF=3,
在RT△BFN中,BF=3,BN=4,
根据勾股定理即可得FN=5.
14. (2017山东菏泽第17题)如图,是的边的中点,连接并延长交的延长线于,若,求的长.
【答案】12.
【解析】
试题分析:
试题解析:先证明△AEF≌△DEC,根据全等三角形的性质可得AF=,再利用平行四边形的性质证得AB=CD=6,根据=AF+AB即可求得BF的长.
【解】
∵
∴AF∥DC
∴∠F=∠DCF
∵是的边的中点
∴AE=DE
∵∠AEF=∠DEC
∴△AEF≌△DEC
∴AF=
∵
∴AB=CD=6
即=AF+AB=12.
15. (2017浙江舟山第23题)如图是的中线,是线段上一点(不与点重合),
交于点,,连结.
(1)如图1,当点与重合时,求证:四边形是平行四边形;
(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长交于点,若,且.当,时,求的长.
【答案】(1)详见解析;(2)结论成立,理由详见解析;(3)DH=1+.
【解析】
试题分析:(1)由DE//AB,可得同位角相等:∠EDC=∠ABM,由CE//AM,可得同位角相等∠ECD=∠ADB,又由BD=DC,则△ABD≅△EDC,得到AB=ED,根据有一组对边平行且相等,可得四边形ABDE为平行四边形.(2)过点M作MG//DE交EC于点G,则可得四边形DMGE为平行四边形,且ED=GM且ED//GM,由(1)可得AB=GM且AB//GM,即可证得;(3)在已知条件中没有已知角的度数时,则在求角度时往特殊角30°,60°,45°的方向考虑,则要求这样的特殊角,就去找边的关系,构造直角三角形,取线段HC的中点I,连结MI,则MI是△BHC的中位线,可得MI//BH,MI=BH,且MI⊥AC,则去找Rt△AMI中边的关系,求出∠CAM;设DH=x,即可用x分别表示出AH=x,AD=2x,AM=4+2x,BH=4+2x,由△HDF~△HBA,得到对应边成比例,求出x的值即可.
试题解析:(1)证明:∵DE//AB,∴∠EDC=∠ABM,
∵CE//AM,
∴∠ECD=∠ADB,
又∵AM是△ABC的中线,且D与M重合,∴BD=DC,
∴△ABD≅△EDC,
∴AB=ED,又∵AB//ED,
∴四边形ABDE为平行四边形。
(2)解:结论成立,理由如下:
过点M作MG//DE交EC于点G,
∵CE//AM,
∴四边形DMGE为平行四边形,
∴ED=GM且ED//GM,
由(1)可得AB=GM且AB//GM,
∴AB=ED且AB//ED.
∴四边形ABDE为平行四边形.
(3)
解:取线段HC的中点I,连结MI,
∴MI是△BHC的中位线,
∴MI//BH,MI=BH,
又∵BH⊥AC,且BH=AM,
∴MI=AM,MI⊥AC,
∴∠CAM=30°
设DH=x,则AH=x,AD=2x,
∴AM=4+2x,∴BH=4+2x,
由(2)已证四边形ABDE为平行四边形,
∴FD//AB,
∴△HDF~△HBA,
∴, 即
解得x=1±(负根不合题意,舍去)
∴DH=1+.
考点:平行四边形的判定与性质
16. (2017浙江湖州第22题) (本小题10分)
已知正方形的对角线,相交于点.
(1)如图1,,分别是,上的点,与的延长线相交于点.若,求证:;
(2)如图2,是上的点,过点作,交线段于点,连结交于点,交于点.若,
①求证:;
②当时,求的长.
【答案】(1)证明见解析(2)①证明见解析②
【解析】
试题分析:(1)根据正方形的性质,可根据三角形全等的判定(ASA)与性质求证即可;
(2)①同(1)中,利用上面的结论,根据SAS可证的结论;
②设CH=x,然后根据正方形的性质和相似三角形的判定与性质可得,然后列方程求解即可.
(2)①证明:∵OD=OC,∠DOG=∠COE=90°
又OE=OG
∴△DOG≌△COE(SAS)
∴∠ODG=∠OCE
②解:设CH=x,
∵四边形ABCD是正方形,AB=1
∴BH=1-x
∠DBC=∠BDC=∠ACB=45°
∵EH⊥BC
∴∠BEH=∠EBH=45°
∴EH=BH=1-x
∵∠ODG=∠OCE
∴∠BDC-∠ODG=∠ACB-∠OCE
∴∠HDC=∠ECH
∵EH⊥BC
∴∠EHC=∠HCD=90°
∴△CHE∽△DCH
∴
∴HC2=EH·CD
得x2+x-1=0
解得,(舍去)
∴HC=
考点:1、正方形的性质,2、全等三角形的判定与性质,3、相似三角形的判定与性质,4、解一元二次方程
17. (2017湖南湘潭第20题)如图,在中,连接并延长交的延长线于点.
(1)求证:;
(2)若,,求的度数.
【答案】(1)详见解析;(2)108°.
【解析】
试题分析:(1)利用AAS或ASA,证明.(2)先证明△ABF是等腰三角形,再求的度数.
试题解析:
(1) ∵
∴AD∥DF
∴∠ADE=∠EFC
∵,∠AED=∠CEF
∴
(1) ∵
∴AD=BC
∵
∴AD=FC
∴FC=BC
∵
∴AB=BF
∵
∴=108°