中考数学分项解析3--圆(2017版)
加入VIP免费下载

本文件来自资料包: 《中考数学分项解析3--圆(2017版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
专题11 圆 一、选择题 ‎1.(2017四川省南充市)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为(  )‎ A.60πcm2      B.65πcm2      C.120πcm2      D.130πcm2‎ ‎【答案】B.‎ 考点:1.圆锥的计算;2.点、线、面、体.‎ ‎2.(2017四川省广安市)如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=,BD=5,则OH的长度为(  )‎ A.    B.    C.    D.‎ ‎【答案】D.‎ ‎【解析】‎ 试题分析:连接OD,如图所示:‎ ‎∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵cos∠CDB==,BD=5,∴DH=4,∴BH==3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42‎ ‎=(x+3)2,解得:x=,∴OH=;故选D.‎ 考点:1.圆周角定理;2.解直角三角形.‎ ‎3.(2017四川省眉山市)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为(  )‎ A.114°      B.122°      C.123°      D.132°‎ ‎【答案】C.‎ ‎【解析】‎ 试题分析:∵∠A=66°,∴∠ABC+∠ACB=114°,∵点I是内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=57°,∴∠BIC=180°﹣57°=123°,故选C.‎ 考点:三角形的内切圆与内心.‎ ‎4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是(  )‎ A.68πcm2      B.74πcm2      C.84πcm2      D.100πcm2‎ ‎【答案】C.‎ ‎【解析】‎ 试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.‎ 考点:1.圆锥的计算;2.几何体的表面积.‎ ‎5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(  )‎ A.    B.    C.     D.‎ ‎【答案】A.‎ 考点:正多边形和圆.‎ ‎6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为(  )‎ A.    B.    C.    D.‎ ‎【答案】B.‎ ‎【解析】‎ 试题分析:给各点标上字母,如图所示.‎ AB==,AC=AD==,AE==,AF==,AG=AM=AN==5,∴时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内.故选B.‎ 考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题.‎ ‎7.(2017山东省济宁市)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是(  )‎ A.     B.     C.    D. ‎ ‎【答案】A.‎ ‎【解析】‎ 试题分析:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD= =.‎ 又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选A.‎ 考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质. ‎ ‎8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为(  )‎ A.130°      B.100°      C.65°      D.50°‎ ‎【答案】C.‎ 考点:圆内接四边形的性质.‎ ‎9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于(  )‎ A.    B.    C.     D.‎ ‎【答案】A.‎ ‎【解析】‎ 试题分析:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为: =.故选A.‎ 考点:1.弧长的计算;2.圆周角定理.‎ 二、填空题 ‎10.(2017四川省眉山市)如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8cm,DC=2cm,则OC= cm.‎ ‎【答案】5.‎ ‎【解析】‎ 试题分析:连接OA,∵OC⊥AB,∴AD=AB=4cm,设⊙O的半径为R,由勾股定理得,OA2=AD2+OD2,∴R2=42+(R﹣2)2,解得R=5,∴OC=5cm.故答案为:5.‎ 考点:1.垂径定理;2.勾股定理.‎ ‎11.(2017四川省达州市)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=CE;④.其中正确结论的序号是 .‎ ‎【答案】.‎ ‎【解析】‎ 试题分析:①∵AF是AB翻折而来,∴AF=AB=6,∵AD=BC=,∴DF==3,∴F是CD中点;∴①‎ 正确;‎ ‎②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴,设OP=OF=x,则,解得:x=2,∴②正确;‎ ‎③∵RT△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;‎ ‎∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③错误;‎ ‎④连接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边△;同理△OPG为等边△;‎ ‎∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==.∴④正确;‎ 故答案为:①②④.‎ 考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.‎ ‎12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为 .‎ ‎【答案】π.‎ 考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.‎ ‎13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是 .‎ ‎【答案】.‎ 考点:1.正多边形和圆;2.规律型;3.综合题.‎ ‎14.(2017四川省南充市)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.‎ ‎(1)求证:DE是⊙O的切线;‎ ‎(2)若CF=2,DF=4,求⊙O直径的长.‎ ‎【答案】(1)证明见解析;(2)6.‎ ‎【解析】‎ 试题分析:(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;‎ ‎(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.‎ 试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;‎ ‎(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.‎ 考点:切线的判定与性质.‎ ‎15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.‎ ‎(1)求证:直线AE是⊙O的切线.‎ ‎(2)若∠BAC=30°,BC=4,cos∠BAD=,CF=,求BF的长.‎ ‎【答案】(1)证明见解析;(2).‎ ‎【解析】‎ 试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;‎ ‎(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:,得出结论.‎ 试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;‎ ‎(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC==,Rt△ADB中,cos∠BAD==,∴=,∴AD=6,∴BD= =,∵∠BDC=‎ ‎∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴,∴,∴BF=.‎ 考点:1.切线的判定与性质;2.解直角三角形.‎ ‎16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.‎ ‎(1)求证:CA=CN;‎ ‎(2)连接DF,若cos∠DFA=,AN=,求圆O的直径的长度.‎ ‎【答案】(1)证明见解析;(2).‎ ‎【解析】‎ 试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;‎ ‎(2)连接OC,如图2所示.‎ ‎∵cos∠DFA=,∠DFA=∠ACH,∴=.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN= = = a=,∴a=2,AH=3a=6,CH=4a=8.‎ 设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=,∴圆O的直径的长度为2r=.‎ 考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.‎ ‎17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.‎ ‎(1)求证:PQ是⊙O的切线;‎ ‎(2)求证:BD2=AC•BQ;‎ ‎(3)若AC、BQ的长是关于x的方程的两实根,且tan∠PCD=,求⊙O的半径.‎ ‎【答案】(1)证明见解析;(2)证明见解析;(3).‎ ‎【解析】‎ 试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;‎ ‎(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;‎ 试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;‎ ‎(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴,∴BD2=AC•BQ;‎ ‎(3)解:方程可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=,∴tan∠ABD=,∴BE=3DE,∴DE2+(3DE)2=BD2=4,∴DE=,∴BE=,设OB=OD=R,∴OE=R﹣,∵OB2=OE2+BE2,∴R2=(R﹣)2+()2,解得:R=,∴⊙O的半径为.‎ 考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.‎ ‎18.(2017山东省枣庄市)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.‎ ‎(1)试判断直线BC与⊙O的位置关系,并说明理由;‎ ‎(2)若BD=,BF=2,求阴影部分的面积(结果保留π).‎ ‎【答案】(1)BC与⊙O相切;(2) .‎ ‎【解析】‎ 试题分析:(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;‎ ‎(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB= =,则阴影部分的面积为S△ODB﹣S扇形DOF=×2×﹣=.故阴影部分的面积为.‎ 考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.‎ ‎19.(2017山东省济宁市)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.‎ ‎(1)求证:DE是⊙O的切线;‎ ‎(2)求AE的长.‎ ‎【答案】(1)证明见解析;(2)11.‎ ‎【解析】‎ 试题分析:(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;‎ ‎(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.‎ 考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.‎ ‎20.(2017广东省)如图,AB是⊙O的直径,AB=,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.‎ ‎(1)求证:CB是∠ECP的平分线;‎ ‎(2)求证:CF=CE;‎ ‎(3)当时,求劣弧的长度(结果保留π)‎ ‎【答案】(1)证明见解析;(2)证明见解析;(3).‎ ‎【解析】‎ 试题分析:(1)根据等角的余角相等证明即可;‎ ‎(2)欲证明CF=CE,只要证明△ACF≌△ACE即可;‎ ‎(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;‎ 试题解析:(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE.‎ ‎(2)证明:连接AC.‎ ‎∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE.‎ ‎(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,∵△BMC∽△PMB,∴,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM=,∴∠BCM=30°,∴∠OCB=∠OBC=∠‎ BOC=60°,∴的长= =.‎ 考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.‎ ‎21.(2017江苏省盐城市)如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.‎ ‎(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)‎ ‎(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.‎ ‎【答案】(1)作图见解析;(2).‎ ‎【解析】‎ 试题分析:(1)作∠ACB的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O,作射线CO即可;‎ ‎(2)添加如图所示辅助线,圆心O的运动路径长为,先求出△ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O2=60°=∠ABC、∠O1OO2=90°,从而知△OO1O2∽△CBA,利用相似三角形的性质即可得出答案.‎ 试题解析:(1)如图①所示,射线OC即为所求;‎ ‎(2)如图2,圆心O的运动路径长为,过点O1作O1D⊥BC、O1F⊥AC、O1G⊥AB,垂足分别为点D、F、G,过点O作OE⊥BC,垂足为点E,连接O2B,过点O2作O2H⊥AB,O2I⊥AC,垂足分别为点H、I,在Rt△ABC中,∠ACB=90°、∠A=30°,∴AC===,AB=2BC=18,∠ABC=60°,∴C△ABC=9++18=27+,∵O1D⊥BC、O1G⊥AB,∴D、G为切点,∴BD=BG,在Rt△O1BD和Rt△O1BG中,∵BD=BG,O1B=O1B,∴△O1BD≌△O1BG(HL),∴∠O1BG=∠O1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD= ==,∴OO1=9﹣2﹣=7﹣,∵O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴,即,∴ =,即圆心O运动的路径长为.‎ 考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题. ‎ ‎22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.‎ ‎(1)若OB=4,求直线AB的函数关系式;‎ ‎(2)连接BD,若△ABD的面积是5,求点B的运动路径长.‎ ‎【答案】(1)y=2x+4;(2).‎ ‎【解析】‎ 试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;‎ ‎(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.‎ 试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x+4;‎ ‎(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴AD•OB=5,∴(m+2)•m=5,即 ,解得或(舍去),∵∠BOD=90°,∴点B的运动路径长为:.‎ 考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.‎ ‎23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.‎ ‎(1)求证:AP=BQ;‎ ‎(2)当BQ=时,求的长(结果保留π);‎ ‎(3)若△APO的外心在扇形COD的内部,求OC的取值范围.‎ ‎【答案】(1)见解析;(2);(3)4<OC<8.‎ ‎(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三点共线,∵在Rt△BOQ 中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴优弧的长==;‎ ‎(3)∵△APO的外心是OA的中点,OA=8,∴△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8.‎ 考点:1.切线的性质;2.弧长的计算;3.旋转的性质.‎ ‎24.(2017河北省)平面内,如图,在ABCD中,AB=10,AD=15,tanA=.点P为AD边上任意一点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.‎ ‎(1)当∠DPQ=10°时,求∠APB的大小;‎ ‎(2)当tan∠AtanA=3:2时,求点Q与点B间的距离(结果保留根号);‎ ‎(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留).‎ ‎【答案】(1)100°或80°;(2);(3)16π或20π或32π.‎ ‎【解析】‎ 试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;‎ ‎(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;‎ ‎(2)如图2,过点P作PH⊥AB于点H,连接BQ.‎ ‎∵tan∠AtanA=,∴HB=3:2.‎ 而AB=10,∴AH=6,HB=4.‎ 在Rt△PHA中,PH=AH·tanA=8,∴PQ=PB=,∴在Rt△PQB中,QB=PB=.‎ ‎(3)①点Q在AD上时,如图3,由tanA=得,PB=AB·sinA=8,∴扇形面积为16π.‎ ‎ ‎ ‎②点A在CD上时,如图4,过点P作PH⊥AB于点H,交CD延长线于点K,由题意∠K=90°,∠KDP=∠A.‎ 设AH=x,则PH=AH·tanA=.‎ ‎∵∠BPH=∠KQP=90°-∠KPQ,PB=QP,∴Rt△HPB≌Rt△KQP.∴KP=HB=10-x,∴AP=,PD=,AD=15=,解得x=6.‎ ‎∵,∴扇形的面积为20π.‎ ‎③点Q在BC延长线上时,如图5,过点B作BM⊥AD于点M,由①得BM=8.‎ 又∠MPB=∠PBQ=45°,∴PB=,∴扇形面积为32π.‎ 所以扇形的面积为16π或20π或32π.‎ 考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.‎ ‎25.(2017浙江省丽水市)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.‎ ‎(1)求证:∠A=∠ADE;‎ ‎(2)若AD=16,DE=10,求BC的长.‎ ‎【答案】(1)证明见解析;(2)15.‎ ‎【解析】‎ 试题分析:(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;‎ ‎(2)连接CD.‎ ‎∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC= =15.‎ 考点:1.切线的性质;2.勾股定理.‎ ‎26.(2017浙江省台州市)如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.‎ ‎(1)求证:△APE是等腰直角三角形;‎ ‎(2)若⊙O的直径为2,求的值.‎ ‎【答案】(1)证明见解析;(2)4.‎ ‎【解析】‎ 试题分析:(1)只要证明∠AEP=∠ABP=45°,∠PAB=90°即可解决问题;‎ ‎(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=PM,PB=PN,∴= == = = =4.‎ 考点:1.三角形的外接圆与外心;2.等腰直角三角形.‎ ‎27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.‎ ‎(1)求证:EF是⊙O的切线;‎ ‎(2)若DE=1,BC=2,求劣弧的长l.‎ ‎【答案】(1)证明见解析;(2).‎ ‎【解析】‎ 试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;‎ ‎(2)连接OD,DC,∵∠DAC=∠DOC,∠OAC=∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l= =.‎ 考点:1.切线的判定与性质;2.弧长的计算.‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料