中考数学分项解析3--探索性问题(2017版)
加入VIP免费下载

本文件来自资料包: 《中考数学分项解析3--探索性问题(2017版)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
专题12 探索性问题 一、选择题 ‎1.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则的值为(  )‎ A.    B.    C.    D.‎ ‎【答案】C.‎ 考点:1.规律型:图形的变化类;2.综合题.‎ ‎2.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为(  )‎ A.2017π      B.2034π      C.3024π      D.3026π ‎【答案】D.‎ 考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.‎ ‎3.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是(  )‎ A.4      B.      C.2      D.0‎ ‎【答案】A.‎ ‎【解析】‎ 试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…‎ ‎∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.‎ 考点:1.规律型:图形的变化类;2.综合题.‎ ‎4.(2017重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为(  )‎ A.116      B.144      C.145      D.150‎ ‎【答案】B.‎ ‎【解析】‎ 试题分析:∵4=1×2+2,11=2×3+2+3‎ ‎ 21=3×4+2+3+4‎ 第 4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.‎ 故选B.‎ 考点:规律型:图形的变化类.‎ 二、填空题 ‎5.(2017山东省济宁市)请写出一个过点(1,1),且与x轴无交点的函数解析式: .‎ ‎【答案】(答案不唯一).‎ 考点:1.反比例函数的性质;2.一次函数的性质;3.正比例函数的性质;4.二次函数的性质;5.开放型.‎ ‎6.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形 A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是 .‎ ‎【答案】.‎ 考点:1.正多边形和圆;2.规律型;3.综合题.‎ 三、解答题 ‎7.(2017四川省南充市)如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB.‎ ‎(1)求证:EF⊥AG;‎ ‎(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?‎ ‎(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当,求△PAB周长的最小值.‎ ‎【答案】(1)证明见解析;(2)成立;(3).‎ ‎【解析】‎ 试题分析:(1)由正方形的性质得出AD=AB,∠EAF=∠ABG=90°,证出,得出△AEF∽△BAG,由相似三角形的性质得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理证出∠AOE=90°即可;‎ ‎(2)证明△AEF∽△BAG,得出∠AEF=∠BAG,再由角的互余关系和三角形内角和定理即可得出结论;‎ ‎(2)解:成立;理由如下:‎ 根据题意得: =,∵ =,∴=,又∵∠EAF=∠ABG,∴△AEF∽△BAG,∴∠AEF=∠BAG,∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,∴∠AOE=90°,∴EF⊥AG;‎ ‎(3)解:过O作MN∥AB,交AD于M,BC于N,如图所示:‎ 则MN⊥AD,MN=AB=4,∵P是正方形ABCD内一点,当S△PAB=S△OAB,∴点P在线段MN上,当P为MN的中点时,△PAB的周长最小,此时PA=PB,PM=MN=2,连接EG、PA、PB,则EG∥AB,EG=AB=4,∴△AOF∽△GOE,∴=,∵MN∥AB,∴ =,∴AM=AE=×2=,由勾股定理得:PA= =,∴△PAB周长的最小值=2PA+AB=.‎ 考点:1.四边形综合题;2.探究型;3.动点型;4.最值问题.‎ ‎8.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.‎ ‎(1)若CE=8,CF=6,求OC的长;‎ ‎(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.‎ ‎【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.‎ ‎【解析】‎ 试题分析:(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;‎ ‎(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:‎ 连接AE、AF,如图所示:‎ 当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.‎ 考点:1.矩形的判定;2.平行线的性质;3.等腰三角形的判定与性质;4.探究型;5.动点型.‎ ‎9.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,.‎ ‎(1)请你帮小明写出中点坐标公式的证明过程;‎ 运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为 ;‎ ‎②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标: ;‎ 拓展:(3)如图3,点P(2,n)在函数(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.‎ ‎【答案】(1)答案见解析;(2)①;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3).‎ ‎【解析】‎ 试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;‎ ‎(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.‎ 试题解析:‎ ‎(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+= ,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ= =,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;‎ ‎(2)①∵M(2,﹣1),N(﹣3,5),∴MN==,故答案为:;‎ ‎②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);‎ ‎(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,),由题意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x=,∴R(,),∴,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则=, =,解得x=,y=,∴M(,),∴MN= =,即△PEF的周长的最小值为.‎ 考点:1.一次函数综合题;2.阅读型;3.分类讨论;4.最值问题;5.探究型;6.压轴题.‎ ‎10.(2017山东省枣庄市)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.‎ ‎(1)试判断直线BC与⊙O的位置关系,并说明理由;‎ ‎(2)若BD=,BF=2,求阴影部分的面积(结果保留π).‎ ‎【答案】(1)BC与⊙O相切;(2) .‎ ‎【解析】‎ 试题分析:(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;‎ 试题解析:(1)BC与⊙O相切.‎ 证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.‎ ‎(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB= =,则阴影部分的面积为S△ODB﹣S扇形DOF=×2×﹣=.故阴影部分的面积为.‎ 考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.‎ ‎11.(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.‎ ‎(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;‎ ‎(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;‎ ‎(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.‎ ‎【答案】(1)证明见解析;(2)△ACE是直角三角形;(3):1,45°.‎ ‎【解析】‎ 试题分析:(1)由正方形的性质证明△APE≌△CFE,可得结论;‎ ‎(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;‎ ‎(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算GH和BG的长,由角平分线的逆定理得:∠HCG=∠BCG,由平行线的内错角得:∠AEC=∠ACB=45°.‎ 试题解析:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵AP=CF,∠P=∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;‎ ‎(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.‎ 考点:1.四边形综合题;2.探究型;3.变式探究.‎ ‎12.(2017山西省)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.‎ ‎(1)若AC=4,BC=2,求OE的长.‎ ‎(2)试判断∠A与∠CDE的数量关系,并说明理由.‎ ‎【答案】(1);(2)∠CDE=2∠A.‎ ‎【解析】‎ 试题分析:(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;‎ ‎(2)∠CDE=2∠A.理由如下:‎ 连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.‎ 考点:1.切线的性质;2.探究型;3.和差倍分.‎ ‎13.(2017江苏省盐城市)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.‎ ‎(1)求证:四边形BEDF是平行四边形;‎ ‎(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.‎ ‎【答案】(1)证明见解析;(2)∠ABE=30°.‎ ‎【解析】‎ 试题分析:(1)由矩形可得∠ABD=∠CDB,结合BE平分∠ABD、DF平分∠BDC得∠EBD=∠FDB,即可知BE∥DF,根据AD∥BC即可得证;‎ ‎(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.‎ 考点:1.矩形的性质;2.平行四边形的判定与性质;3.菱形的判定;4.探究型. ‎ ‎14.(2017江苏省盐城市)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点 G.‎ ‎(1)求证:BC是⊙F的切线;‎ ‎(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;‎ ‎(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.‎ ‎【答案】(1)证明见解析;(2);(3)AG=AD+2CD.‎ ‎【解析】‎ 试题分析:(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;‎ ‎(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;‎ ‎(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=,即⊙F的半径为;‎ ‎(3)解:AG=AD+2CD.‎ 证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=AD+CD,∴AG=2FE=AD+2CD.‎ 考点:1.圆的综合题;2.探究型.‎ ‎15.(2017江苏省盐城市)(探索发现】‎ 如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .‎ ‎【拓展应用】‎ 如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 .(用含a,h的代数式表示)‎ ‎【灵活应用】‎ 如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.‎ ‎【实际应用】‎ 如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.‎ ‎【答案】【探索发现】;【拓展应用】;【灵活应用】720;【实际应用】1944.‎ ‎【拓展应用】:由△APN∽△ABC知,可得PN=a﹣PQ,设PQ=x,由S矩形PQMN=PQ•PN═,据此可得;‎ ‎【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;‎ ‎【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.‎ 试题解析:【探索发现】‎ ‎∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则 ===,故答案为:;‎ ‎【拓展应用】‎ ‎∵PN∥BC,∴△APN∽△ABC,∴,即,∴PN=a﹣PQ,设PQ=x,则S矩形PQMN=PQ•PN=x(a﹣x)= =,∴当PQ=时,S矩形PQMN最大值为,故答案为:;‎ ‎【灵活应用】‎ 如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,‎ 由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵∠FAE=∠DHE,AE=AH,∠AEF=∠HED,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI=(AB+AF)=24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BG•BF=×(40+20)×(32+16)=720,答:该矩形的面积为720;‎ ‎【实际应用】‎ 如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BC•EH=1944cm2.‎ 答:该矩形的面积为1944cm2.‎ 考点:1.四边形综合题;2.阅读型;3.探究型;4.最值问题;5.压轴题.‎ ‎16.(2017江苏省连云港市)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB.AC上,且AD=AE,连接BE、CD,交于点F.‎ ‎(1)判断∠ABE与∠ACD的数量关系,并说明理由;‎ ‎(2)求证:过点A、F的直线垂直平分线段BC.‎ ‎【答案】(1)∠ABE=∠ACD;(2)证明见解析.‎ ‎【解析】‎ 试题分析:(1)证得△ABE≌△ACD后利用全等三角形的对应角相等即可证得结论;‎ ‎(2)利用垂直平分线段的性质即可证得结论.‎ 试题解析:(1)∠ABE=∠ACD;‎ 在△ABE和△ACD中,∵AB=AC,∠A=∠A,AE=AD,∴△ABE≌△ACD,∴∠ABE=∠ACD;‎ ‎(2)∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、‎ F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.‎ 考点:1.等腰三角形的性质;2.线段垂直平分线的性质;3.探究型.‎ ‎17.(2017江苏省连云港市)问题呈现:‎ 如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:.(S表示面积)‎ 实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.‎ 如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+S.‎ 如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与S之间的数量关系,并说明理由.‎ 迁移应用:‎ 请直接应用“实验探究”中发现的结论解答下列问题:‎ ‎(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=,求EG的长.‎ ‎(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值.‎ ‎【答案】问题呈现:;实验探究:;迁移应用:(1)‎ EG=;(2).‎ ‎【解析】‎ 试题分析:问题呈现:只要证明S△HGE=S矩形AEGD,同理S△EGF=S矩形BEGC,由此可得S四边形EFGH=S△HGE+S△EFG=S矩形BEGC;‎ 实验探究:结论:2S四边形EFGH=S矩形ABCD﹣.根据=, =, =, =,即可证明;‎ 迁移应用:(1)利用探究的结论即可解决问题.‎ ‎(2)分两种情形探究即可解决问题.‎ 试题解析:问题呈现:证明:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∠A=90°,∵AE=DG,∴四边形AEGD是矩形,∴S△HGE=S矩形AEGD,同理S△EGF=S矩形BEGC,∴S四边形EFGH=S△HGE+S△EFG=S矩形BEGC.‎ 实验探究:结论:2S四边形EFGH=S矩形ABCD﹣.‎ 理由:∵ =, =, =, =,∴S四边形EFGH=+++﹣,∴2S四边形EFGH=2+2+2+2﹣2,∴2S四边形EFGH=S矩形ABCD﹣.‎ 迁移应用:解:(1)如图4中,∵2S四边形EFGH=S矩形ABCD﹣,∴ =25﹣2×11=3=A1B1A1D1,∵正方形的面积为25,∴边长为5,∵A1D12=HF2﹣52=29﹣25=4,∴A1D1=2,A1B1=,∴‎ EG2=A1B12+52=,∴EG=.‎ ‎(2)∵2S四边形EFGH=S矩形ABCD+,∴四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.‎ ‎①如图5﹣1中,当G与C重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.‎ 此时矩形A1B1C1D1面积=1×(﹣2)=‎ ‎②如图5﹣2中,当G与D重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大.‎ 此时矩形A1B1C1D1面积=21=2,∵2>,∴矩形EFGH的面积最大值=.‎ 考点:1.四边形综合题;2.最值问题;3.阅读型;4.探究型;5.压轴题.‎ ‎18.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.‎ ‎(1)如图1,若CE=CF,求证:DE=DF;‎ ‎(2)如图2,在∠EDF绕点D旋转的过程中:‎ ‎①探究三条线段AB,CE,CF之间的数量关系,并说明理由;‎ ‎②若CE=4,CF=2,求DN的长.‎ ‎【答案】(1)证明见解析;(2)①AB2=4CE•CF;②.‎ ‎【解析】‎ 试题分析:(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;‎ ‎(2)解:①∵∠DCF=∠DCE=135°,∴∠CDF+∠F=180°﹣135°=45°,∵∠CDF+∠CDE=45°,∴∠F=∠CDE,∴△CDF∽△CED,∴,即CD2=CE•CF,∵∠ACB=90°,AC=BC,AD=BD,∴CD=AB,∴AB2=4CE•CF;‎ ‎②如图,过D作DG⊥BC于G,则∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,由CD2=CE•CF得CD=,∴在Rt△DCG中,CG=DG=CD•sin∠DCG=×sin45°=2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△CEN∽△GDN,∴‎ ‎ =2,∴GN=CG=,∴DN= ==.‎ 考点:1.几何变换综合题;2.探究型;3.和差倍分;4.综合题.‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料