2017-2018学年 九年级数学上册 期末模拟卷
一 、选择题:
若x=2是关于x的一元二次方程x2﹣mx+8=0的一个解.则m的值是( )
A.6 B.5 C.2 D.﹣6
观察下列图形,是中心对称图形的是( )
A. B. C. D.
在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是( )
A.10 B.14 C.16 D.40
已知实数x1,x2满足x1+x2=11,x1x2=30,则以x1,x2为根的一元二次方程是( )
A.x2-11x+30=0 B.x2+11x+30=0
C.x2+11x-30=0 D.x2-11x-30=0
如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=65°,则∠AOC等于( )
A.25° B.30° C.50° D.65°
如图,点A.B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于( )
A.12.5° B.15° C.20° D.22.5°
第 11 页 共 11 页
如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是( )
A.BD=CD B.AC⊥BC C.AB=2AC D.AC=2OD
如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
A. B. C. D.
对于抛物线y=﹣x2+2x+3,有下列四个结论:
①它的对称轴为x=1;
②它的顶点坐标为(1,4);
③它与y轴的交点坐标为(0,3),与x轴的交点坐标为(﹣1,0)和(3,0);
④当x>0时,y随x的增大而减小.其中正确的个数为( )
A.1 B.2 C.3 D.4
同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是( )
第 11 页 共 11 页
如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为( )
A.π﹣2 B.π C.π D.π﹣2
如图,若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是( )
A. B. C. D.
一 、填空题(:
方程(m+1)x2+2x﹣1=0有两个不相等的实数根,则m的范围 .
一个不透明的袋子中装有仅颜色不同的3个红球和2个白球,从中随机摸出1个球不放回,再随机摸出1个球,则摸到的2个球颜色相同的概率为 .
如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 .
同圆的内接正方形和内接正三角形的边长比是 .
已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为 .
第 11 页 共 11 页
已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:
①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;其中正确的结论是 .
一 、解答题:
解方程:(x+1)(x﹣2)=2x(x﹣2)
如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).
(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;
(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.
第 11 页 共 11 页
已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.
某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号
分组
频数
一
6≤m<7
2
二
7≤m<8
7
三
8≤m<9
a
四
9≤m≤10
2
(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).
第 11 页 共 11 页
如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.
(1)求证:直线EF是⊙O的切线;
(2)若CF=3,cosA=0.4,求出⊙O的半径和BE的长;
(3)连接CG,在(2)的条件下,求CG:EF的值.
某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)
…
30
40
50
60
…
销售量y(万个)
…
5
4
3
2
…
同时,销售过程中的其他开支(不含进价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?
第 11 页 共 11 页
如图,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.
(1)点A的坐标为 ,点B的坐标为 ;
(2)抛物线的关系式为 ;
(3)设(2)中抛物线的顶点为D,求△DBC的面积;
(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C的位置.请判断点B′C′是否在(2)中的抛物线上,并说明理由.
第 11 页 共 11 页
参考答案
1.A
2.C
3.A
4.A
5.B
6.C.
7.B
8.C
9.C
10.C
11.C
12.C
13.答案为:m>﹣2且m≠﹣1.
14.答案为:0.4.
15.答案为:6.
16.答案为:.
17.答案为:3π;
18.答案为:①③.
19.解:(x+1)(x﹣2)=2x(x﹣2)移项得:(x+1)(x﹣2)﹣2x(x﹣2)=0
因式分解得:(x﹣2)(x+1﹣2x)=0,∴x﹣2=0,或x+1﹣2x=0,解得:x1=2,x2=1.
20.解:(1)如图,△A1B1C1为所作,A(﹣2,﹣6);
(2)如图,△A2B2C2为所作.
第 11 页 共 11 页
21.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).
∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,
(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴抛物线的顶点坐标为:(1,4).
22.解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;
(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=36°;
(3)由题意可得,所有的可能性如下图所示,
故第一组至少有1名选手被选中的概率是: =,
即第一组至少有1名选手被选中的概率是.
23.(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD∥AB,
∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;
(2)解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=0.4,
设⊙O的半径为R,则=,解得R=2,∴AB=2OD=4.在Rt△AEF中,
∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=4﹣=;
(3)解:连接CG,则∠AGC=90°,∵DE⊥AB,∴∠AEF=90°,∴CG∥EF,
∴====.
第 11 页 共 11 页
24.解:(1)根据表格中数据可得出:y与x是一次函数关系,
设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣0.1x+8;
(2)根据题意得出:
z=(x﹣20)y﹣40=(x﹣20)(﹣0.1x+8)﹣40=﹣0.1x2+10x﹣200,
=﹣0.1(x2﹣100x)﹣200=﹣0.1 [(x﹣50)2﹣2500]﹣200=﹣0.1(x﹣50)2+50,
故销售价格定为50元/个时净得利润最大,最大值是50万元.
(3)当公司要求净得利润为40万元时,即﹣0.1(x﹣50)2+50=40,解得:x1=40,x2=60.
如上图,通过观察函数y=﹣0.1(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣0.1x+8,y随x的增大而减少,
因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.
25.解:(1)∵C(1,0),∴OC=1,∵AC=,∴OA==2,∴A(0,2),
作BH⊥x轴于H,如图1,∵△ACB为等腰直角三角形,∴CA=CB,∠ACB=90°,
∵∠ACO+∠BCH=90°,∠ACO+∠CAO=90°,∴∠CAO=∠BCH,
在△ACO和△CBH中,∴△ACO≌△CBH,∴OC=BH=1,AO=CH=2,∴B(﹣3,1);
故答案为(0,2),(﹣3,1);
(2)把B(﹣3,1)代入y=ax2+ax﹣2得9a﹣3a﹣2=1,解得a=0.5,∴抛物线解析式为y=0.5x2+0.5x﹣2;
故答案为y=0.5x2+0.5x﹣2;
(3)∵y=0.5x2+0.5x﹣2=0.5(x+0.5)2﹣,∴D(﹣0.5,﹣),设直线BD的关系式为y=kx+b,
将B(﹣3,1)、D(﹣0.5,﹣)代入得,解得,
∴BD的关系式为y=﹣x﹣;直线BD和x轴交点为E,如图1,
当y=0时,﹣ x﹣=0,解得x=﹣2.2,则E(﹣2.2,0),
∴S△BCD=S△BCE+S△DCE=0.5•(﹣1+2.2)•1+0.5•(﹣1+2.2)•=;
(4)点B′、C′在(2)中的抛物线上.理由如下:
第 11 页 共 11 页
如图2,过点B′作B′N⊥y轴于点N,过点B作BF⊥y轴于点F,过点C′作C′M⊥y轴于点M,
∵三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C的位置,
∴∠CAC′=90°,∠BAB′=90°,AC=AC′,AB=AB′,
∵∠BAF+∠B′AN=90°,∠BAF+∠ABF=90°,∴∠ABF=∠B′AN,
在Rt△AB′N与Rt△BAF中,,∴Rt△AB′N≌Rt△BAF,
∴B′N=AF=2,AN=BF=3,∴B′(1,﹣1),同理可得△AC′M≌△CAO,
∴C′M=OA=2,AM=OC=1,∴C′(2,1),
当x=1时,y=x2+x﹣2=+﹣2=﹣1,所以点B′(1,﹣1)在抛物线上,
当x=2时,y=x2+x﹣2=2+1﹣2=1,所以点C′(2,1)在抛物线上.
第 11 页 共 11 页