阶段测评(一) 数与式
(时间:45分钟 总分:100分)
一、选择题(每小题3分,共30分)
1.=( B )
A. B. C. D.
2.2016年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是( C )
A.4.77×105 B.47.7×105
C.4.77×106 D.0.477×105
3.下列计算正确的是( B )
A.2a+b=2ab B.(-a)2=a2
C.a6÷a2=a3 D.a3·a2=a6
4.下列结论正确的是( B )
A.3a2b-a2b=2
B.单项式-x2的系数是-1
C.使式子有意义的x的取值范围是x>-2
D.若分式的值等于0,则a=±1
5.式子有意义,则实数a的取值范围是( C )
A.a≥-1 B.a≠2
C.a≥-1且a≠2 D.a>2
6.已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,则△ABC的形状是( D )
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰三角形或直角三角形
7.如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行第三列的“数”是( C )
30
2sin60°
22
-3
-2
-sin45°
0
|-5|
6
23
4
A.5 B.6 C.7 D.8
8.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是( A )
A.-2a+b B.2a-b
4
C.-b D.b
9.估计+1的值应在( B )
A.3和4之间 B.4和5之间
C.5和6之间 D.6和7之间
10.如果a2+2a-1=0,那么代数式·的值是( C )
A.-3 B.-1 C.1 D.4
二、填空题(每小题4分,共24分)
11.(1)计算:-3-5=__-8__;
(2)若m,n互为倒数,则mn2-(n-1)的值为__1__.
12.计算:|-3|+(-1)2=__4__.
13.的平方根是__±__,的立方根是__2__.
14.分解因式:xy2-9x=__x(y+3)(y-3)__.
15.若a-b=2,则代数式5+2a-2b的值是__9__.
16.用m根火柴棒恰好可拼成如图①所示的a个等边三角形或如图②所示的b个正六边形,则=____.
三、解答题(共46分)
17.(9分)因式分解:
(1)(2a+b)2-(a+2b)2;
解:原式=3(a+b)(a-b);
(2)(x-8)(x+2)+6x;
解:原式=(x+4)(x-4);
(3)在实数范围内因式分解:3x3-6x.
解:原式=3x(x2-2)=3x(x+)(x-).
18.(6分)计算:
(1)(-1)3+|-|-×;
解:原式=-1+-1×
4
=-+
=;
(2)(-3)2+2 0170-×sin45°.
解:原式=9+1-3×=7.
19.(8分)先化简,再求值:
(1)3(2x+1)+2(3-x),其中x=-1;
解:原式=6x+3+6-2x=4x+9,
当x=-1时,
原式=4×(-1)+9=5;
(2)+,其中x=2.
解:原式=+
=+
=,
把x=2代入得,原式==3.
20.(6分)先化简,再求值:
÷,其中a是方程2x2+x-3=0的解.
解:原式=÷
=·
=,
由2x2+x-3=0,得x1=1,x2=-,又a-1≠0.∴a=-,∴原式==-.
21.(8分)定义新运算⊕:对于任意实数a,b,都有a⊕b=(a+b)(a-b)+2b(a+b),等号右边是正常的加法、减法及乘法运算.
比如:2⊕5=(2+5)×(2-5)+2×5×(2+5)=-21+70=49.
4
(1)求(-2)⊕3的值;
(2)通过计算,验证等式a⊕b=b⊕a成立.
解:(1)(-2)⊕3=(-2+3)×(-2-3)+2×3×(-2+3)=1×(-5)+2×3×1=-5+6=1.
(2)∵a⊕b=(a+b)(a-b)+2b(a+b)=a2-b2+2ab+2b2=(a+b)2,b⊕a=(b+a)(b-a)+2a(b+a)=b2-a2+2ab+2a2=(a+b)2,∴a⊕b=b⊕a.
22.(9分)如图①是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图②).
(1)图②中的阴影部分的面积为__(b-a)2__;
(2)观察图②请你写出 (a+b)2,(a-b)2,ab之间的等量关系是__(a+b)2-(a-b)2=4ab__;
(3)根据(2)中的结论,若x+y=4,xy=,则(x-y)2=__7__;
(4)实际上通过计算图形的面积可以探求相应的等式.如图③,你发现的等式是__(a+b)·(3a+b)=3a2+4ab+b2__.
4