课下能力提升(十二)柱、锥、台的体积
一、选择题
1.已知圆锥的母线长是8,底面周长为6π,则它的体积是( )
A.9π B.9
C.3π D.3
2.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )
A. B.
C. D.
3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )
A.6 B.9
C.12 D.18
4.(浙江高考)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )
A.108 cm3 B.100 cm3
C.92 cm3 D.84 cm3
5.分别以一个锐角为30°的直角三角形的最短直角边、较长直角边、斜边所在的直线为轴旋转一周,所形成的几何体的体积之比是( )
A.1∶∶ B.6∶2∶
C.6∶2∶3 D.3∶2∶6
二、填空题
6.如图已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a
4
,最小值为b,那么圆柱被截后剩下部分的体积是________.
7.一个圆锥形容器和一个圆柱形容器的轴截面的尺寸如图所示,两容器盛有液体的体积正好相等,且液面高均为h,则h=________.
8.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________.
三、解答题
9.如图所示,是一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的一个圆锥体铅锤,当铅锤从水中取出后,杯里的水将下降多少?(π=3.14)
10.若E,F是三棱柱ABCA1B1C1侧棱BB1和CC1上的点,且B1E=CF,三棱柱的体积为m,求四棱锥ABEFC的体积.
答 案
1. 解析:选C 设圆锥底面圆的半径为r,则2πr=6π,∴r=3.
设圆锥的高为h,则h==,
∴V圆锥=πr2h=3π.
4
2. 解析:选D 用过共顶点的三条棱中点的平面截该正方体,所得三棱锥的体积为×4=,故剩下的凸多面体的体积为1-8×=.
3. 解析:选B 由三视图可知该几何体为底面是斜边为6的等腰直角三角形,高为3的三棱锥,其体积为××6×3×3=9.
4. 解析:选B 根据几何体的三视图可知,所求几何体是一个长方体截去一个三棱锥,∴几何体的体积V=6×6×3-××4×4×3=100 cm3.
5. 解析:选C 设如图所示的Rt△ABC中,
∠BAC=30°,BC=1,则AB=2,AC=,求得斜边上的高CD=,旋转所得几何体的体积分别为V1=π()2×1=π,
V2=π×12×=π,V3=π()2×2=π.
V1∶V2∶V3=1∶∶=6∶2∶3.
6. 解析:采取补体方法,相当于一个母线长为a+b的圆柱截成了两个体积相等的部分,所以剩下部分的体积V=.
答案:
7. 解析:锥体的底面半径和高都是h,圆柱体的底面半径是,高为h,依题意得h2·h=π·()2·h,解得h=a.
答案:a
8.解析:此几何体的直观图如图,ABCD为正方形,边长为20 cm,
S在底面的射影为CD中点E,SE=20 cm,
4
VSABCD=SABCD·SE=cm3.
答案: cm3
9. 解:因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃的底面一样,是一直径为20 cm的圆柱,它的体积正好等于圆锥体铅锤的体积,这个小圆柱的高就是水面下降的高度.
因为圆锥形铅锤的体积为×π×2×20=60π(cm3),
设水面下降的高度为x,则小圆柱的体积为π×(20÷2)2×x=100πx(cm3),所以有方程60π=100πx,解此方程得x=0.6(cm).
答:铅锤取出后,杯中水面下降了0.6 cm.
10. 解:如图所示,连接AB1,AC1.
∵B1E=CF,
∴梯形BEFC的面积等于梯形B1EFC1的面积.
又四棱锥ABEFC的高与四棱锥AB1EFC1的高相等,
∴VABEFC=VAB1EFC1=VABB1C1C.
又VAA1B1C1=S△A1B1C1·h,VABCA1B1C1=m,
∴VAA1B1C1=,
∴VABB1C1C=VABCA1B1C1-VAA1B1C1=m,
∴VABEFC=×m=,即四棱锥ABEFC的体积是.
4