陕西汉中市2018届高三数学12月检测试题(理科附答案)
加入VIP免费下载

本文件来自资料包: 《陕西汉中市2018届高三数学12月检测试题(理科附答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
www.ks5u.com 汉中市2018届高三年级教学质量第一次检测考试 数学(理科)‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共五页。满分150分。考试时间120分钟。‎ 注意事项:1.答题前,考生先将自己的姓名、准考证号等项在密封线内填写清楚。‎ ‎2.选择题,请按题号用2B铅笔填涂方框,非选择题,除作图可使用2B铅笔外,其余各题请按题号用0.5毫米黑色签字笔书写,否则作答无效。‎ ‎3.按照题号在对应的答题区域内作答,超出各题答题区域的答案无效,在草稿纸、试题上答题无效。‎ ‎4.保持字体工整,笔迹清晰,卷面清洁,不折叠。‎ 第I卷(共60分)‎ 一. 选择题:(本题共12个小题,每小题5分共60分,在每小题给出的四个选项中,只有一项是符合要求的)‎ ‎1.已知集合,则集合=( )‎ A. B. C. D. ‎ ‎2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=(  ) ‎ A.-4+i B.‎5 C. -5 D.-4-i ‎3.下列三个命题:‎ ‎①是的充分不必要条件;‎ ‎②;‎ ‎③命题:存在都有 X=3‎ K=0‎ DO ‎ x=2x+1‎ ‎ k=k+1‎ LOOP UNTIL X>16‎ PRINT k 第4题 其中真命题是( )‎ A. ①② B.②③ ‎ C. ①③ D. ①②③‎ ‎4.按照此程序运行,则输出k的值是 (  )‎ A.4 B.5 ‎ ‎ C.2 D.3‎ ‎5.某空间几何体的三视图如图,且已知该几何体的体积为,则其表面积为( )‎ A. B. ‎ ‎ C. D. ‎ ‎6.若则的值为( )‎ A. B. C. D. ‎ ‎7.已知直线和平面满足且在内的射影分别为直线和,则直线和的位置关系是(  )‎ A.相交或平行 B.相交或异面 ‎ C.平行或异面 D.相交、平行或异面 ‎ ‎8.已知函数,若将它的图象向右平移个单位长度,得到函数的图象,则函数图象的一条对称轴方程为( )‎ A. B. C. D.‎ ‎9.若实数满足条件,则的最大值( )‎ A. B.‎4 C. D.‎ ‎10.已知P是ABC内部一点,且=,在ABC内部随机取点M,则点M取自ABP内的概率为( )‎ A. B. C. D.‎ 是椭圆的左右焦点,A是椭圆上的点, (为椭圆的半焦距),则椭圆离心率的取值范围是( ) ‎ A. B. C. D.‎ ‎12.设实数满足的最小值是()‎ A. 2 B.‎1 C. D. ‎ 第II卷(非选择题,共90分)‎ 二.填空题:(本题共4个小题,每小题5分共20分)‎ ‎13.若(其中),则的展开式中的系数为 . ‎ ‎14已知函数恒过定点(3,2),其中均为正数,则的最小值是 .‎ ‎15.已知数列中,,的前项和为,当时,有成立,则 . ‎ ‎16.设F是双曲线C: 的右焦点,P是C左支上的点,已知A(3,8),则PAF周长的最小值是 .‎ 三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤。第17-21题为必考题。第22,23题为选考题,考生根据要求作答。‎ ‎17.(本小题满分12分)‎ 中,角,,的对边分别为,,,且.‎ ‎(Ⅰ)求角的大小;‎ ‎(II)若BC边上的中线AD=,求的面积.‎ ‎18.(本小题满分12分)某学校依次进行A、B两科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲同学参加考试,已知他每次考A科合格的概率均为,每次考B科合格的概率均为.假设他不放弃每次考试机会,且每次考试互不影响.‎ ‎(Ⅰ)求甲恰好3次考试通过的概率;‎ ‎(II)记甲参加考试的次数为X,求X的分布列和均值.‎ C D P B A Q ‎19.(本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD, AB⊥AD,AD∥BC,AP=AB=AD=1,直线PB与CD所成角的大小为.‎ ‎(Ⅰ)若Q是BC的中点,求三棱锥D-PQC的体积;‎ ‎(II)求二面角B-PD-A的余弦值.‎ ‎20.(本小题满分12分)‎ 已知函数 ‎(Ⅰ)当时,求的最大值与最小值;‎ ‎(Ⅱ)如果函数有三个不同零点,求实数的取值范围. ‎ Fn Fn-1‎ F3 …‎ F2‎ F1‎ P1‎ P2‎ Pn-1‎ y x O ‎21.(本小题满分12分)如图所示, 是抛物线C:的焦点,在x轴上,(其中i=1,2,3,…n),的坐标为(,0)且,在抛物线C上,且在第一象 限是正三角形.‎ ‎(Ⅰ)证明:数列是等差数列;‎ ‎(II)记的面积为, 证明: + + +…+ . ‎ 请考生在22,23题中任选一题作答。如果多做,那么按所做的第一题记分。‎ ‎22. (10分)‎ 已知直线的参数方程为 (为参数,),曲线的极坐标方程为.‎ ‎(Ⅰ)求曲线的直角坐标方程;‎ ‎(II)设直线与曲线相交于两点,求的最小值.‎ ‎23. (10分)‎ 已知,不等式的解集是.‎ ‎(Ⅰ)求的值;‎ ‎(II)若存在实数解,求实数的取值范围. ‎ 汉中市2018届高三年级教学质量第一次检测考试 数学(理科)参考答案 一、 选择题:‎ 题号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 选项 B C D D A ‎ A D B C C B A 二、 填空题:‎ ‎13. -40 14. 15. 16.38‎ 三、 解答题:‎ ‎17.【解析】 ‎ ‎………………..6分 ‎(1) ‎ ‎………………..12分 ‎ ‎ ‎18. …………12分 ‎………………..6分 ‎19.解:(1)以{,, }为单位正交基底,建立如图所示的空 C D P B A x y z Q 间直角坐标系A-xyz.‎ 因为AP=AB=AD=1, ‎ 所以A(0,0,0),B(1,0,0),‎ D(0,1,0),P(0,0,1).设C(1,y,0),‎ 则=(1,0,-1),=(-1,1-y,0). ‎ 因为直线PB与CD所成角大小为,‎ 所以|cos<,>|=||=,‎ 即=,解得y=2或y=0(舍),‎ 所以C(1,2,0),‎ 所以BC的长为2. ‎ ‎………………..6分 ‎ . ‎ ‎(2)设平面PBD的一个法向量为n1=(x,y,z).‎ 因为=(1,0,-1),=(0,1,-1),‎ 则即 ‎ 令x=1,则y=1,z=1,所以n1=(1,1,1). ‎ 因为平面PAD的一个法向量为n2=(1,0,0),‎ 所以cos<n1,n2>==, ‎ 所以,由图可知二面角B-PD-A的余弦值为 ……………12分 ‎ ‎20. (Ⅰ)因为,‎ 所以,‎ 令得,的变化如下表:‎ ‎-1‎ ‎2‎ ‎0‎ ‎-‎ ‎0‎ ‎+‎ 在上的最小值是,‎ 因为,‎ 所以在上的最大值是. ……………………6分 ‎(Ⅱ),‎ 所以或,‎ 设,则,时,,时,,‎ 所以在上是增函数,在上是减函数,,‎ 且,‎ ‎(ⅰ)当时,即时,没有实根,方程有1个实根;‎ ‎(ⅱ)当时,即时,有1个实根为零,方程 有1个实根;‎ ‎(ⅲ)当时,即时,有2不等于零的实根,方程有3个实根.‎ 综上可得, 时,方程有3个实根. …………………12分 ‎ ‎ 代入抛物线可得3x2-10x+3=0 则 ‎ ‎……..6分 ‎ ‎ ‎………………..12分 ‎ ‎ ‎22. 解:(1)由,得,‎ 所以曲线的直角坐标方程为 ............4分 ‎(2)将直线的参数方程代入,得. ‎ 设两点对应的参数分别为,则,………6分 ‎∴‎ 当时,的最小值为4. ……………………………..10分 ‎23. 解:(Ⅰ)由, 得,即. ‎ 当时,. ………2分 因为不等式的解集是 所以 解得 当时,. …………4分 因为不等式的解集是 所以 无解. 所以 ………5分 ‎(II)因为 ‎ 所以要使存在实数解,只需. ……8分 ‎ 解得或. ‎ ‎ 所以实数的取值范围是. ……10分

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料