专题12 空间的平行与垂直
1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的( )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
解析:若E,F,G,H四点不共面,则直线EF和GH肯定不相交,但直线EF和GH不相交,E,F,G,H四点可以共面,例如EF∥GH.故选B.
答案:B
2.设m,n是不同的直线,α,β,γ是不同的平面,有以下四个命题:
①若α∥β,α∥γ,则β∥γ
②若α⊥β,m∥α,则m⊥β
③若m⊥α,m∥β,则α⊥β
④若m∥n,n⊂α,则m∥α
其中正确命题的序号是( )
A.①③ B.①④
C.②③ D.②④
答案:A
3.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )
A.AP⊥PB,AP⊥PC
15
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PC
D.AP⊥平面PBC
答案:B
4.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:
①若m∥n,m⊥β,则n⊥β;
②若m∥α,m∥β,则α∥β;
③若m∥n,m∥β,则n∥β;
④若m⊥α,m⊥β,则α⊥β.
其中真命题的个数为( )
A.1 B.2
C.3 D.4
解析:对于①,由直线与平面垂直的判定定理易知其正确;对于②,平面α与β可能平行或相交,故②错误;对于③,直线n可能平行于平面β,也可能在平面β内,故③错误;对于④,由两平面平行的判定定理易得平面α与β平行,故④错误.综上所述,正确命题的个数为1,故选A.
答案:A
5.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )
A.①② B.①②③
C.① D.②③
15
答案:B
6.已知平面α及直线a,b,则下列说法正确的是( )
A.若直线a,b与平面α所成角都是30°,则这两条直线平行
B.若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直
C.若直线a,b平行,则这两条直线中至少有一条与平面α平行
D.若直线a,b垂直,则这两条直线与平面α不可能都垂直
解析:对于A,若直线a,b与平面α所成角都是30°,则这两条直线平行、相交、异面,故A错;对于B,若直线a,b与平面α所成角都是30°,则这两条直线可能垂直,如图,直角三角形ACB的直角顶点C在平面α内,边AC、BC可以与平面α都成30°角,故B错;
C显然错误;
15
对于D,假设直线a,b与平面α都垂直,则
直线a,b平行,与已知矛盾,则假设不成立,
故D正确,故选D.
答案:D
7.三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,M,N分别是A1B1,A1C1的中点,则BM与AN所成角的余弦值为( )
A. B.
C. D.
答案:C
8.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A-BCD中,AB⊥平面BCD,且BD⊥CD,AB=BD=CD,点P在棱AC上运动,设CP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是( )
解析:
15
如图,作PQ⊥BC于Q,作QR⊥BD于R,连接PR,则PQ∥AB,QR∥CD.
设AB=BD=CD=1,
则AC=,=,即PQ=,
又==,
所以QR=,
所以PR=
=,
所以f(x)=,其图象是关于直线x=对称的曲线,排除B、C、D,故选A.
答案:A
9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题正确的是( )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
答案:D
15
10.已知α,β是两个不同的平面,m,n是两条不重合的直线,则下列命题中正确的是( )
A.若m∥α,α∩β=n,则m∥n
B.若m⊥α,n⊥m,则n∥α
C.若m⊥α,n⊥β,α⊥β,则m⊥n
D.若α⊥β,α∩β=n,m⊥n,则m⊥β
解析:对于A,m∥α,α∩β=n,则m∥n或m、n异面,故A错误;对于B,若m⊥α,n⊥m,则n∥α或n⊂α,故B错误;对于C,若n⊥β,α⊥β,则n∥α或n⊂α,又m⊥α,所以m⊥n,故C正确;对于D,若α⊥β,α∩β=n,m⊥n,则m可能与β相交,也可能与β平行,也可能在β内,故D错误.
答案:C
11.如图,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是( )
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BCD
C.平面ABC⊥平面BDE,且平面ACD⊥平面BDE
D.平面ABC⊥平面ACD,且平面ACD⊥平面BDE
答案:C
12.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①若m⊂α,n∥α,则m∥n;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若α∩β=n,m∥n,m∥α,则m∥β;
④若α⊥γ,β⊥γ,则α∥β.
其中真命题的个数是( )
A.0 B.1
C.3 D.3
解析:①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m⊂β,故③错误;④α∥β或α
15
与β相交,故④错误.
答案:B
13.如图,在空间四边形ABCD中,点M∈AB,点N∈AD,若=,则直线MN与平面BDC的位置关系是________.
解析:由=,得MN∥BD.
而BD⊂平面BDC,MN⊄平面BDC,
所以MN∥平面BDC.
答案:平行
14.正方体ABCDA1B1C1D1中,E 为线段B1D1上的一个动点,则下列结论中正确的是________.(填序号)
①AC⊥BE;
②B1E∥平面ABCD;
③三棱锥EABC的体积为定值;
④直线B1E⊥直线BC1.
解析:因AC⊥平面BDD1B1,故①正确;因为B1D1∥平面ABCD,故②正确;记正方体的体积为V,则VEABC=V,为定值,故③正确;B1E与BC1不垂直,故④错误.
答案:①②③
15.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列命题正确的命题序号是________.
①平面ABD⊥平面ABC ②平面ADC⊥平面BDC
③平面ABC⊥平面BDC ④平面ADC⊥平面ABC
15
所以平面ABC⊥平面ADC.
答案:④
16.如图,在空间四边形ABCD中,M∈AB,N∈AD,若=,则直线MN与平面BDC的位置关系是________.
解析:由=,得MN∥BD.
而BD⊂平面BDC,MN⊄平面BDC,
所以MN∥平面BDC.
答案:平行
17.设α,β,γ是三个平面,a,b是两条不同直线,有下列三个条件:
①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).
答案:①或③
18.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:
①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.
其中正确命题的个数是________.
解析:如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,
15
∴PA⊥平面PBC.
又∵BC⊂平面PBC,
∴PA⊥BC.
同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.
答案:3
19.在矩形ABCD中,AB