2018年高考数学二轮专题--概率与统计押题
加入VIP免费下载

本文件来自资料包: 《2018年高考数学二轮专题--概率与统计押题》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
专题16 概率与统计 ‎1.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是(  )‎ A.   B. C. D.1‎ ‎【答案】C ‎2.若θ∈[0,π],则sin(θ+)>成立的概率为(  )‎ A. B. C. D.1‎ ‎【答案】B ‎【解析】依题意,当θ∈[0,π]时,θ+∈[,],由sin(θ+)>得≤θ+x2,选乙参加更合适 C.x1=x2,选甲参加更合适 D.x1=x2,选乙参加更合适 ‎【答案】A ‎【解析】根据茎叶图可得甲、乙两人的平均成绩分别为x1≈31.67,x2≈24.17,从茎叶图来看,甲的成绩比较集中,而乙的成绩比较分散,因此甲发挥的更稳定,选甲参加比赛更合适,故选A.‎ ‎17.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是(  )‎ A.x1,x2,…,xn的平均数 B.x1,x2,…,xn的标准差 C.x1,x2,…,xn的最大值 D.x1,x2,…,xn的中位数 ‎【答案】B 11‎ ‎【解析】本题考查样本的数字特征.统计问题中,体现数据的稳定程度的指标为数据的方差或标准差.故选B.‎ ‎18.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(  )‎ ‎(注:下表为随机数表的第8行和第9行)‎ 第8行 第9行A.07 B.25‎ C.42 D.52‎ ‎【答案】D ‎【解析】依题意得,依次选出的个体分别是12,34,29,56,07,52,…因此选出的第6个个体是52,选D.‎ ‎19.对一批产品的长度(单位:毫米)进行抽样检测,样本容量为200,如图为检测结果的频率分布直方图,根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品,则该样本中三等品的件数为(  )‎ A.5 B.7‎ C.10 D.50‎ ‎【答案】D ‎20.样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其方差为(  )‎ A. B. C. D.2‎ ‎【答案】D ‎【解析】依题意得m=5×1-(0+1+2+3)=-1,样本方差s2=(12+02+12+22+22)=2,即所求的样本方差为2.‎ ‎21.登山族为了了解某山高y(km)与气温x(℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:‎ 气温x(℃)‎ ‎18‎ ‎13‎ ‎10‎ ‎-1‎ 11‎ 山高y(km)‎ ‎24‎ ‎34‎ ‎38‎ ‎64‎ 由表中数据,得到线性回归方程=-2x+(∈R),由此请估计出山高为72(km)处气温的度数为(  )‎ A.-10 B.-8‎ C.-4 D.-6‎ ‎【答案】D ‎【解析】由题意可得=10,=40,‎ 所以=+2=40+2×10=60.‎ 所以=-2x+60,当=72时,有-2x+60=72,解得x=-6,故选D.‎ ‎22.下列说法:‎ ‎①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;‎ ‎②设有一个线性回归方程=3-5x,变量x增加1个单位时,y平均增加5个单位;‎ ‎③设具有相关关系的两个变量x,y的相关系数为r,则|r|越接近于0,x和y之间的线性相关程度越强;‎ ‎④在一个2×2列联表中,由计算得K2的值,则K2的值越大,判断两个变量间有关联的把握就越大.‎ 以上错误结论的个数为(  )‎ A.0 B.1‎ C.2 D.3‎ ‎【答案】C ‎23.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.‎ ‎【答案】76‎ ‎【解析】由题意知:m=8,k=8,则m+k 11‎ ‎=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.‎ ‎24.设样本数据x1,x2,…,x2 017的方差是4,若yi=2xi-1(i=1,2,…,2 017),则y1,y2,…,y2 017的方差为________.‎ ‎【答案】16‎ ‎25.某一段公路限速‎60 km/h,现抽取200辆通过这一段公路的汽车的时速,其频率分布直方图如图所示,则这200辆汽车中在该路段超速的有________辆.‎ ‎【答案】120‎ ‎【解析】由频率分布直方图可得超速的频率为0.04×10+0.02×10=0.6,所以该路段超速的有200×0.6=120辆.‎ ‎26.一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这一颗骰子连续抛掷三次,观察向上的点数,则三次点数依次构成等差数列的概率为________.‎ ‎【答案】 ‎【解析】基本事件总数为6×6×6,事件“三次点数依次成等差数列”包含的基本事件有(1,1,1),(1,2,3),(3,2,1),(2,2,2),(1,3,5),(5,3,1),(2,3,4),(4,3,2),(3,3,3),(2,4,6),(6,4,2),(3,4,5),(5,4,3),(4,4,4),(4,5,6),(6,5,4),(5,5,5),(6,6,6)共18个,所求事件的概率P==.‎ ‎27.设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到直线y+2=0的距离大于2的概率是________.‎ ‎【答案】 ‎【解析】作出平面区域D,可知平面区域D是以A(4,3),B(4,-2),C(-6,-2)为顶点的三角形区域,当点在△AED区域内时,点到直线y+2=0的距离大于2.‎ 11‎ 所以P===.‎ ‎28.如图,在长方体ABCD-A1B‎1C1D1中,E,H分别是棱A1B1,D‎1C1上的点(点E与B1不重合),且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G.设AB=2AA1=‎2a,EF=a,B1E=2B‎1F.在长方体ABCD-A1B‎1C1D1内随机选取一点,则该点取自于几何体A1ABFE-D1DCGH内的概率为________.‎ ‎【答案】 HC‎1G分别是等高的五棱柱和三棱柱,由几何概型可知,所求概率为:‎ P=1-=1- ‎=1-=.‎ ‎29.某鲜花店将一个月(30天)某品种鲜花的日销售量与销售天数统计如下表,将日销售量在各区间的销售天数占总天数的值视为概率.‎ 日销售量(枝)‎ ‎(0,50)‎ ‎[50,100)‎ ‎[100,150)‎ ‎[150,200)‎ ‎[200,250)‎ 销售天数 ‎3天 ‎5天 ‎13天 ‎6天 ‎3天 ‎(1)求这30天中日销售量低于100枝的概率;‎ ‎(2)若此花店在日销售量低于100枝的时候选择两天做促销活动,求这两天恰好是在日销售低于50枝时的概率.‎ 11‎ ‎30.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如下表:‎ 停靠时间 ‎2.5‎ ‎3‎ ‎3.5‎ ‎4‎ ‎4.5‎ ‎5‎ ‎5.5‎ ‎6‎ 轮船数量 ‎12‎ ‎12‎ ‎17‎ ‎20‎ ‎15‎ ‎13‎ ‎8‎ ‎3‎ ‎(1)设该月100艘轮船在该泊位的平均停靠时间为a小时,求a的值;‎ ‎(2)假定某天只有甲、乙两艘轮船需要在该泊位停靠a小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.‎ ‎【解析】(1)a=×(2.5×12+3×12+3.5×17+4×20+4.5×15+5×13+5.5×8+6×3)=4.‎ ‎(2)设甲船到达的时间为x,乙船到达的时间为y,则 若这两艘轮船在停靠该泊位时至少有一艘船需要等待,则|y-x|

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料