厦门外国语学校2018届高三数学1月阶段试卷(理科带答案)
加入VIP免费下载

本文件来自资料包: 《厦门外国语学校2018届高三数学1月阶段试卷(理科带答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
厦门外国语学校2018届高三上学期1月阶段考试(‎01/02/2018‎)‎ 理科数学试题 ‎1. 设是虚数单位),则复数在平面内对应 ()‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎2.已知集合 ,则 ()‎ ‎ ‎ ‎3.将函数的图象向右平移个单位,得到函数的图象,则( )‎ A. B. C. D.0‎ ‎4.执行下面的程序框图,如果输入的,则输出的为 ( )‎ ‎ A.7 B.‎6 C.5 D.4 ‎ ‎5.若等差数列的公差为,且是与的等比中项,则该数列的前项和取最小值时,‎ 的值等于 ( )‎ ‎ A.7 B.‎6 C.5 D.4 ‎ ‎6.已知函数 ,则下列结论正确的是 ( )‎ A.是奇函数 B.是增函数 C.是周期函数 D.的值域为 ‎ ‎7. 实数,满足时,目标函数的最大值等于5,则实数的值为 A.2 B.‎3 ‎ C.4 D.5 ( )‎ ‎8. 在中, 分别为内角的对边, 且,则()‎ A. B. C. D. ‎ ‎9.已知抛物线的焦点为,其上有两点满足,‎ 则 ( )‎ A. B. C. D.‎ ‎10.已知实数,,,则的最小值是 ()‎ ‎ A. B. C. D. ‎ ‎11.已知圆:,四边形为圆的内接正方形,、分别为边、‎ 的中点,当正方形绕圆心转动时,的取值范围是 ( )‎ A. B.    C. D. ‎ ‎12.已知函数的定义域为,当时, ,且对任意的实数,等式 成立,若数列满足,且,‎ 则下列结论成立的是 ( )‎ A. B. ‎ C. D. ‎ ‎13.若函数的图象在处的切线方程是,‎ 则 . ‎ ‎14. 某几何体的三视图如图所示,则该几何体的体积是_________.‎ ‎15.在平面直角坐标系中,已知点是半圆 上的一个动点,点在线段的延长线上.当时,则点 的纵坐标的取值范围是 .‎ ‎16.已知函数,.若不等式对所有的,‎ 都成立,则的取值范围是 ‎ ‎17. 的内角的对边分别为,且.‎ ‎(1)证明:成等比数列;‎ ‎(2)若角的平分线交于点,且,求.‎ ‎18. 已知数列的前项和为,,常数,且对一切正整数都成立.‎ ‎(1)求数列的通项公式;‎ ‎(2)设,当为何值时,数列的前项和最大?‎ ‎19.如图,三棱台中, 侧面与侧面是全等的梯形,‎ 若,且.‎ ‎(Ⅰ)若,,证明:∥平面;‎ ‎(Ⅱ)若二面角为,求平面与平面 所成的锐二面角的余弦值. ‎ ‎20. 已知为坐标原点,,是椭圆上的点,且,设动点满足. ‎ ‎ (1)求动点的轨迹方程;‎ ‎(2)若直线与曲线相交于,两个不同点,求面积的最大值.‎ ‎21.设函数.‎ ‎(1)若函数在区间内是单调递增函数,求实数的取值范围;‎ ‎(2)若函数有两个极值点,且,求证:.‎ ‎22. 在平面直角坐标系中,曲线的参数方程为(为参数);在以原点为极点,‎ 轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.‎ ‎(1)求曲线的极坐标方程和曲线的直角坐标方程;‎ ‎(2)若射线与曲线的交点分别为(异于原点),当斜率时,求的取值范围.‎ ‎23. 已知函数,(),若关于的不等式的 整数解有且仅有一个值为.‎ ‎(1)求实数的值; (2)若函数的图象恒在函数的图象上方,求实数的取值范围. ‎ ‎1-12‎ A A C B B D B B B B B D ‎13 ‎ ‎14 ‎ ‎15‎ ‎16. ‎ ‎17解:(1)因为,‎ ‎ 所以 ,化简可得,‎ ‎ 由正弦定理得,,故成等比数列.‎ ‎(2)由题意,得,‎ ‎ 又因为是角平分线,所以,即,‎ ‎ 化简得,,即. 由(1)知,,解得,‎ ‎ 再由得,(为中边上的高),‎ ‎ 即,又因为,所以.‎ ‎18. 解:(1)令,得,因为,所以,当时,,,两式相减得,[来源:学。科。网Z。X。X。K]‎ 所以,从而数列为等比数列, 所以.‎ ‎(2)当,时,由(1)知,,‎ 所以数列是单调递减的等差数列,公差为,‎ 所以 当时,,所以数列的前6项和最大.‎ ‎19.(Ⅰ)证明:连接,梯形,,‎ 易知:……2分;‎ 又,则∥……4分;‎ 平面,平面,‎ 可得:∥平面……6分;‎ ‎(Ⅱ)侧面是梯形,,‎ ‎,,‎ 则为二面角的平面角, ……7分;‎ 均为正三角形,在平面内,过点作的垂线,如图建立空间直角坐标系,不妨设,则 ‎,故点,‎ ‎……9分;‎ 设平面的法向量为,则有:……10分;‎ 设平面的法向量为,则有:……11分;‎ ‎,‎ 故平面与平面所成的锐二面角的余弦值为……12分;‎ ‎20. 解:(1)设点,则由,得,即 ‎,,因为点,在椭圆,所以,‎ ‎,故,‎ ‎,‎ 由题意知,,所以,即动点的轨迹的方程为.‎ ‎(2)由曲线与直线联立得,‎ 消得,因为直线与曲线交于,两点,‎ 所以,又,所以.‎ 设,,则,,‎ 因为点到直线:的距离,‎ ‎,‎ ‎,所以,‎ ‎,当且仅当,即时取等号,‎ 所以面积的最大值为.‎ ‎21. 解:(1)由题意知在区间内恒成立 即在区间内恒成立,解得 ‎ 当时,,当时,,‎ 且仅当时,,所以函数单调递增,所以的取值范围是 ‎ ‎(2)函数的定义域为,,即,‎ 则有,解得 证法一:因为,‎ 所以, 令 ‎ 则,因为,‎ 所以存在,使得,列表如下:‎ ‎-‎ ‎0‎ ‎+‎ 又,所以,‎ 所以函数在内为减函数, 所以,即. ‎ 证法二:因为是方程的解,所以.‎ 因为,所以.‎ 先证,因为,即证,‎ 在区间内,,在区间内,,‎ 所以为极小值,,即,所以成立. (8分)‎ 再证,即证.‎ 令 (10分)‎ 则,因为,‎ 所以,函数在区间内为增函数,‎ 所以, 所以成立.‎ 得成立. (12分)‎ ‎22. 解:(1)曲线的直角坐标方程为,即,将 代入并化简得曲线的极坐标方程为,‎ 由,两边同时乘以,得,将 代入得曲线的直角坐标方程为. ‎ ‎(2)设射线的倾斜角为,则射线的极坐标方程为,‎ 且. 联立,得, ‎ 联立,得 ‎ 所以,‎ 即的取值范围是 ‎ ‎23. ‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料