2017-2018学年度上学期八年级数学期末试卷
(考试时间:120分钟,满分:150分)
一、选择题:(本大题12个小题,每小题4分,共48分)
1.下列大学的校徽图案中,是轴对称图形的是( )
A. B. C. D.
2.下列长度的三条线段,能组成三角形的是( )
A.3,4,8; B.5,6,11;
C.12,5,6; D.3,4,5 .
3.若分式有意义,则x的取值范围是( )
A.x≠-1; B.x≠1; C.x≥-1; D.x≥1.
4.下列运算正确的是( )
A.3x2+2x3=5x5; B.;
C.3-2=-6; D.(x3)2=x6.
5.下列因式分解正确的是( )
A.x2-xy+x=x(x-y); B.a3+2a2b+ab2=a(a+b)2;
C.x2-2x+4=(x-1)2+3; D.ax2-9=a(x+3)(x-3).
6.化简:( )
A.1; B.0; C.x; D.x2。
7.如图,一个等边三角形纸片,剪去一个角后得到一个
四边形,则图中∠α+∠β的度数是( )
A.180°; B.220°; C.240°; D.300°.
8如图,在△ABC中,D是BC边上一点,且AB=AD=DC,
∠BAD=40°,则∠C为( ).
A.25°; B.35°; C.40°; D.50°。
9.如图,△ABC的外角∠ACD的平分线CP与∠ABC平分线BP
交于点P,若∠BPC=40°,则∠CAP的度数是( )
A.30°; B.40°; C.50°; D.60°。
10.若分式 ,则分式的值等于( )
A.; B.; C.; D..
11.关于x的方程无解,则m的值为( )
A.-8; B.-5; C.-2; D.5.
12. 在△ABC中,∠ACB=90°,AC=BC=4,点D为AB的中点,M,N分别在BC,AC上,且BM=CN现有以下四个结论:21·cn·jy·com
①DN=DM; ② ∠NDM=90°; ③ 四边形CMDN的面积为4;
④△CMN的面积最大为2.其中正确的结论有( )
A.①②④; B. ①②③; C. ②③④; D. ①②③④.
二、填空题:(本大题6个小题,每小题4分,共24分)
13.已知一个多边形的内角和等于1260°,则这个多边形是 边形.
14.因式分解:2a2-2= .
15.解方程:,则x= .
16.如图,∠ABF=∠DCE,BE=CF,请补充一个条件: ,
能使用“AAS”的方法得△ABF≌△DCE.
17.若,则的值是 .
18.在锐角△ABC中,BC=8,∠ABC=30°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是 。www.21-cn-jy.com
三、解答题:(本大题2个小题,每小题8分,共16分)
19. 如图,AB∥DC,AB=DC,AC与BD相交于点O.求证:AO=CO
20.△ABC在平面直角坐标系中的位置如图所示.A(2,3),B(3,1),C(-2,-2)三点在格点上.
(1)作出△ABC关于y轴对称的△A1B1C1;
(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;
(3)求出△ABC的面积.
四、解答题:(本大题4个小题,每小题10分,共40分)
21.(1)计算:[(x+y)2-(x-y)2]÷(2xy).
(2)因式分解:(x-8)(x+2)+6x.
22.先化简,,再在-2,0,1,2四个数中选一个合适的代入求值.
23.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.21世纪教育网版权所有
(1)甲、乙两种款型的T恤衫各购进多少件?
(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T恤衫商店共获利多少元?21教育网
24. 如图1,C是线段BE上一点,以BC、CE为边分别在BE的同侧作等边△ABC和等边△DCE,连结AE、BD.2·1·c·n·j·y
(1)求证:BD=AE;
(2)如图2,若M、N分别是线段AE、BD上的点,且AM=BN,请判断△CMN的形状,并说明理由.
五、解答题:(本大题2个小题,共22分)
25. 若一个两位正整数m的个位数为8,则称m为“好数”.
(1)求证:对任意“好数”m,m2-64一定为20的倍数;
(2)若m=p2-q2,且p,q为正整数,则称数对(p,q)为“友好数对”,规定:,例如68=182-162,称数对(18,16)为“友好数对”,则,求小于50的“好数”中,所有“友好数对”的H(m)的最大值.【来源:21·世纪·教育·网】
26. 如图,△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,M为DE的中点.过点E作与AD平行的直线,交射线AM于点N.21·世纪*教育网
(1)当A,B,C三点在同一条直线上时(如图1),求证:M为AN中点.
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一条直线上时(如图2),求证:△CAN为等腰直角三角形.www-2-1-cnjy-com
(3)将图1中的△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.2-1-c-n-j-y
参考答案:
一、选择题:
1,C; 2,D; 3,B; 4,D; 5,B; 6,C;
7,C; 8,B; 9,C; 10,B; 11,B; 12,D.21*cnjy*com
二、填空题:
13.9; 14.2(a+1)(a-1); 15.; 16.∠A=∠D; 17.; 18.4.
三、解答题:(本大题2个小题,每小题8分,共16分)
19.证明: ∵AB∥DC
∴∠A=∠C,∠B=∠D. (2分)
在△AOB和△COD中
∴△AOB≌△COD (ASA) (6分)
∴AO=CO (8分)【来源:21cnj*y.co*m】
20.解:(1)作图(略) (2分)
(2)A2(2,-3),B2(3,-1),C2(-2,2) (5分)
(3)
=25-1-7.5-10
=6.5 (8分)【出处:21教育名师】
四、解答题:(本大题4个小题,每小题10分,共40分)
21.解:(1)原式=[x2+2xy+y2-x2+2xy-y2]÷(2xy) (3分)
=4xy÷2xy
=2 (5分)【版权所有:21教育】
(2) 原式=x2-6x-16+6x
=x2-16 (3分)21教育名师原创作品
=(x+4)(x-4) (5分)21*cnjy*com
22.解:原式=
=
= (5分)21cnjy.com
∵分式的分母≠0 ∴x≠-2、-1、0、1.
又∵x在-2、0、1、2. ∴x=2. (8分)
当x=2时,
原式=. (10分)
23.解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有
, (3分)
解得x=40,
经检验,x=40是原分式方程的解,且符合题意,
所以: 1.5x=60.
答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(6分)
(2)乙的进价:, 甲的进价:160﹣30=130(元),
130×60%×60+160×60%×(40÷2)-160×[1-(1+60%)×0.5]×(40÷2)
=4680+1920﹣640
=5960(元)
答:售完这批T恤衫商店共获利5960元. (10分)
24.证明:(1)∵△ABC、△DCE均是等边三角形,
∴AC=BC,DC=DE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠BCD=∠ACE,
在△DCB和△ACE中,
∴△DCB≌△ACE(SAS),
∴BD=AE; (5分)
(2)△CMN为等边三角形,理由如下:
由(1)可知:△ACE≌△DCB,
∴∠CAE=∠CDB,即∠CAM=∠CBN,
∵AC=BC,AM=BN,
在△ACM和△BCN中,
∴△ACM≌△BCN(SAS),
∴CM=CN,∠ACM=∠BCN,
∵∠ACB=60°即∠BCN+∠ACN=60°,
∴∠ACM+∠ACN=60°即∠MCN=60°,
∴△CMN为等边三角形. (10分)
五、解答题:(本大题2个小题,共22分)
25.解:(1)证明:设m=10a+8(1≤a≤9的整数)
∴m2-64=(10a+8)2-64
=100a2+160a+64-64
=20a(5a+8)
∵1≤a≤9的整数,
∴a(5a+8)为整数;
∴m2-64是20的倍数. (5分)
(2)∵m=p2-q2,且p,q为正整数
∴10a+8=(P+q)(p-q)
当a=1时,18=1×18=2×9=3×6,没有满足条件的p,q
当a=2时,28=1×28=14×2= 4×7
其中满足条件的p,q的数对有(8,6),即28=82-62
∴H(28)=
当a=3时,38=1×38=2×19,没有满足条件的p,q
当a=4时,48=1×48=2×24=3×16=4×12=6×8;
满足条件的p,q的数对为:
或或
解得:或或
即48=132-112=82-42=72-12
∴H(48)=或H(48)=或H(48)=
∵<<<.
∴所有“友好数对”的H(m)的最大值为(10分)
26. 解:证明:(1)∵EN∥AD
∴∠MAD=∠N,∠ADM=∠NEM
∵M为DE的中点
∴DM=EM
在△ADM和△NEM中
∴△ADM≌△NEM
∴AM=NM
∴M为AN中点 (4分)
(2)∵△BAD和△BCE均为等腰直角三角形
∴AB=AD,CB=CE,∠CBE=∠CEB=45°
∵AD∥NE
∴∠DAE+∠NEA=180°
∵∠DAE=90°,∴∠NEA=90°
∴∠NEC=135°
∵A、B、E三点在同一条直线上
∴∠ABC=180°-∠CBE=135°
∴∠ABC=∠NEC
由(1),知△ADM≌△NEM
∴AD=NE
∵AD=AB,∴AB=NE
在△ABC和△NEC中
∴△ABC≌△NEC
∴AC=NC,∠ACB=∠NCE
∴∠ACB+∠BCN=∠NCE+∠BCN,即∠ACN=∠BCE=90°
∴△CAN为等腰直角三角形. (8分)
(3) △CAN仍为等腰直角三角形
证明:延长AB交NE于点F,由〔1),得△ADM≌△NEM
∴AD=NE
∵AD=AB,∴AB=NE
∵∠BAD=90°,AD∥NE
∴∠BFE=90°
在四边形BCEF中,∵∠BCE=∠BFE=90°
∴∠FBC+∠FEC=360°-90°-90°=180°
∵∠FBC+∠ABC=180°
∴∠ABC=∠FEC
在△ABC和△NEC中
∴△ABC≌△NEC
∴AC=NC,∠ACB=∠NCE
∴∠ACB+∠BCN=∠NCE+∠BCN,即∠ACN=∠BCE=90°
∴△CAN为等腰直角三角形. (12分)