由莲山课件提供http://www.5ykj.com/ 资源全部免费
2019 初三数学中考专题复习 三角形 专题训练
1. 下列说法正确的是( )
A.所有的等腰三角形都是锐角三角形
B.等边三角形属于等腰三角形
C.不存在既是钝角三角形又是等腰三角形的三角形
D.一个三角形里有两个锐角,则一定是锐角三角形
2. 三角形一边上的中线把原三角形一定分成两个( )
A.形状相同的三角形 B.面积相等的三角形
C.直角三角形 D.周长相等的三角形
3. 如图所示,AD是△ABC的角平角线,AE是△ABD的角平分线,若∠BAC=80°,则∠EAD的度数是( )
A.20° B.30° C.45° D.60°
4. 如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于点D
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,则∠BAD的大小是( )
A.45° B.54° C.40° D.50°
5. 下列说法错误的是( )
A.三角形的三条高一定在三角形内部交于一点
B.三角形的三条中线一定在三角形内部交于一点
C.三角形的三条角平分线一定在三角形内部交于一点
D.三角形的三条高可能相交于外部一点
6. 如图,在Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )
A.35° B.45° C.55° D.65°
7. 如图所示,∠A,∠1,∠2的大小关系是( )
A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1
8. 下列长度的三条线段能组成三角形的是( )
A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)
9. 有3 cm,6 cm,8 cm,9 cm的四条线段,任选其中的三条线段组成一个三角形,则能组成三角形的个数为( )
A.1 B.2 C.3 D.4
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10. 如图,具有稳定性的有( )
A.①② B.③④ C.②③④ D.①②③
11. 如图所示,D是BC的中点,E是AC的中点,若S△ADE=1,则S△ABC=________.
12. 如图,在△ABC中,∠BAC=60°,∠ACE=40°,AD,CE是△ABC的角平分线,则∠DAC=________,∠BCE=________,∠ACB=________.
13. 如图,一张直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=________度。
14. 如图是一副三角板叠放的示意图,则∠α=________.
15. 如图,∠1+∠2+∠3+∠4=________度.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16. 直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2=________.
17. 若a,b,c为三角形的三边,且a,b满足+(b-2)2=0,则第三边c的取值范围是____________.
18. 一个三角形的两边长分别是2和3,若它的第三边的长为奇数,则这个三角形的周长为________.
19.一个三角形的三边长分别为2,a-1,5,则a的取值范围是____________.
20. 等腰三角形的周长为16,其一边长为6,则另两边长分别为____________.
21. 有下列条件:①∠A-∠B=90°;②∠A=90°-∠B;③∠A+∠B=∠C;④∠A∶∠B∶∠C=1∶2∶3;⑤∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有________.(填序号)
22. 如图,填空:
(1)在△ABC中,BC边上的高是________;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)在△AEC中,AE边上的高是________;
(3)在△FEC中,EC边上的高是________;
(4)若AB=CD=2 cm,AE=3 cm,则S△AEC=________cm2,CE=________cm.
23. 已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,求AC的长度.
24. 如图,AD是∠CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是∠EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25. 如图,AD,CE是△ABC的两条高,AD=10,CE=9,AB=12.
(1)求△ABC的面积;
(2)求BC的长.
26. (1)如图①,点P为△ABC的∠ABC和∠ACB的角平分线的交点,求证:∠P=90°+∠A;
(2)如图②,点P为△ABC的∠ABC和外角∠ACE的角平分线的交点,求证:∠P=∠A;
(3)如图③,点P为△ABC的外角∠CBE和∠BCF的角平分线的交点,求证:∠P=90°-∠A.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
27. 已知△ABC的两边AB=2 cm,AC=9 cm.
(1)求第三边BC长的取值范围;
(2)若第三边BC的长是偶数,求BC的长;
(3)若ABC是等腰三角形,求其周长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
28. 已知一个等腰三角形的三边长分别为x,2x-4,5x-12,求这个等腰三角形的周长.
29. 如图,△ABC中,AB=AC,D为AC上的一点,求证:AC>(BD+DC).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
30. 如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4 cm2,求阴影部分的面积S阴影。
参考答案:
1---10 BBACA CBACC
11. 4
12. 30° 40° 80°
13. 270
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
14. 75°
15. 540
16. 40°
17. 1