河北定州中学2017-2018高二数学上学期期末试卷(有答案)
加入VIP免费下载

本文件来自资料包: 《河北定州中学2017-2018高二数学上学期期末试卷(有答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
www.ks5u.com 河北定州中学高二期末数学试题 考试时间120分钟 ‎ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。‎ 第Ⅰ卷(选择题 共60分)‎ 一、选择题(每小题5分,共60分。下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)‎ ‎1.若复数,为虚数单位,则=( )‎ A. B. C. D.‎ ‎2.下列四个命题中真命题的个数是( )‎ ①“”是“”的充分不必要条件 ②命题“,”的否定是“,”‎ ③命题,,命题,,则为真命题 A. B. C. D.‎ ‎3.某家具厂的原材料费支出与销售量(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出与的线性回归方程为,则为( )‎ x ‎2‎ ‎4‎ ‎5‎ ‎6‎ ‎8‎ y ‎25‎ ‎35‎ ‎60‎ ‎55‎ ‎75‎ A. 5 B. 15 C. 10 D. 20‎ ‎4.若原命题为:“若为共轭复数,则”,则该命题的逆命题、否命题、逆否命题真假性的判断依次为( )‎ A. 真真真 B. 真真假 C. 假假真 D. 假假假 ‎5. 用, ,…, 表示某培训班10名学员的成绩,其成绩依次为85,68,95,75,88,92,90,80,78,87.执行如图所示的程序框图,若分别输入的10个值,则输出的的值为( )‎ A. B. C. D. ‎ ‎6.设是双曲线上一点,双曲线的一条渐近线方程为, 、分别是双曲线的左、右焦点,若,则( )‎ A. 1或5 B. 1或9 C. 1 D. 9‎ ‎7. 在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是( ) A. B. C. D. ‎ ‎8. 设抛物线C:y2 =4x的焦点为F,直线L过F且与C交于A, B两点.若|AF|=3|BF|,则L的方程为(  )‎ A. B. ‎ C. D. ‎ ‎9. 若函数在上递减,则的取值范围( )‎ A. B. C. D. ‎ ‎10.是椭圆的左,右焦点,点在椭圆上,且到左焦点的距离为6,过做的角平分线的垂线,垂足为则的长为( )‎ A.1 B.2 C.3 D.4‎ ‎11.已知定义在上的可导函数满足,不等式的解集为,则=( )‎ A.1 B.2 C.3 D.4‎ ‎12. 已知,若对任意两个不等的正实数都有 恒成立,则的取值范围是( )‎ A. B. C. D.‎ Ⅱ卷 二、填空题:本题共4个小题,每小题5分,共20分.‎ ‎13.已知方程(是常数)表示曲线,给出下列命题:‎ ‎①曲线不可能为圆;②曲线不可能为抛物线;‎ ‎③若曲线为双曲线,则或;‎ ‎④若曲线为焦点在x轴上的椭圆,则.‎ 其中真命题的编号为 .‎ ‎14.曲线在点处的切线方程为_________________.‎ ‎15.已知是抛物线 的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.‎ ‎16..函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x﹣y﹣3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为 ‎ 解答题:本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。‎ ‎17.(本小题满分10分)‎ 已知; 函数有两个零点.‎ ‎(1)若为假命题,求实数的取值范围;‎ ‎(2)若为真命题, 为假命题,求实数的取值范围.‎ ‎18.已知曲线的参数方程为(为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系.‎ ‎(1)求曲线的极坐标方程;‎ ‎(2)已知倾斜角为且过点的直线与曲线交于两点,求的值.‎ ‎19.为办好省运会,计划招募各类志愿者1.2万人.为做好宣传工作,招募小组对15-40岁的人群随机抽取了100人,回答“省运会”的有关知识,根据统计结果制作了如下的统计图表1、表2:‎ ‎(I)分别求出表2中的a、x的值;‎ ‎(II)若在第2、3、4组回答完全正确的人中,用分层抽样的方法抽取6人,则各组应分别抽取多少人?‎ ‎(III)在(II)的前提下,招募小组决定在所抽取的6人中,随机抽取2人颁发幸运奖,求获奖的2人均来自第3组的概率.‎ ‎20. 已知函数(, ).‎ ‎(1)若的图象在点处的切线方程为,求在区间上的最大值和最小值;‎ ‎(2)若在区间上不是单调函数,求的取值范围.‎ ‎21. 已知椭圆: ()的离心率为,过右焦点且垂直于轴的直线与椭圆交于, 两点,且,直线: 与椭圆交于, 两点.‎ ‎(1)求椭圆的标准方程;‎ ‎(2)已知点,若是一个与无关的常数,求实数的值.‎ ‎22.已知函数.‎ ‎(1)讨论的单调性;‎ ‎(2)若,对于任意,都有恒成立,求的取值范围.‎ 高二数学答案 ‎1-5 BDCCC 6-10 DDCBA 11-12 CA ‎13.②③④;14. . 15. 6 16. 2 ‎ ‎17. (本小题满分10分)‎ 解:若为真,令,问题转化为求函数的最小值,‎ ‎,令,解得,‎ 函数在上单调递减,在上单调递增,‎ 故,故.‎ 若为真,则, 或 .‎ ‎(1)若为假命题,则均为假命题,实数的取值范围为............................5分.‎ ‎(2)若为真命题, 为假命题,则一真一假.‎ 若真假,则实数满足,即;‎ 若假真,则实数满足,即.‎ 综上所述,实数的取值范围为.………………………………………10分 ‎18. (1)依题意,曲线的普通方程为,即,‎ 故,故,故所求极坐标方程为;……………………6分 ‎(2)设直线(t为参数),将此参数方程代入中,‎ 化简可得,显然;设所对应的参数分别为,故 ‎………………………………12分 ‎19.(本小题满分12分)‎ ‎20.(本小题满分12分)‎ ‎【答案】(1)最大值为8,最小值为;(2) .‎ ‎(1)∵在上,∴,‎ ‎∵点在的图象上,∴,‎ 又,∴,‎ ‎∴,解得, ………………………………………3分 ‎∴, ,‎ 由可知和是的极值点.‎ ‎∵, , , ,‎ ‎∴在区间上的最大值为8,最小值为………………………………6分 ‎(2)因为函数在区间上不是单调函数,所以函数在上存在零点.‎ 而的两根为, ,……………………………………………8分 若, 都在上,则解集为空集,这种情况不存在;‎ 若有一个根在区间上,则或,‎ ‎∴…………………………………………………………………12分 ‎21、(本小题满分12分)‎ 解:(1)联立解得,故 又, ,联立三式,解得, , ,‎ 故椭圆的标准方程为……………………………………………………4分 ‎(2)设,联立方程消元得,,‎ ‎∴, ,……………………………………6分 ‎…….9分 又是一个与无关的常数,∴,即,‎ ‎∴, .∵,∴………………………………………………11分 当时, ,直线与椭圆交于两点,满足题意……………………………12分 ‎22(1)‎ ‎①若,则在, 上单调递增,在上单调递减;‎ ‎②,则在上单调递增;‎ ‎③若,则在, 上单调递增,在上单调递减;‎ ‎(2)由1知,当时, 在上单调递增,在单调递减,‎ 所以, ,‎ 故 ,‎ 恒成立,‎ 即恒成立 即恒成立,‎ 令,‎ 易知在其定义域上有最大值,‎ 所以

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料