2017学年第一学期期末杭州地区(含周边)重点中学
高二年级数学学科试题
一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.直角三角形绕着它的一条直角边旋转而成的几何体是( )
A. 圆锥 B.圆柱 C.圆台 D.球
2.抛物线的准线方程是( )
A. B. C. D.
3.直线的倾斜角大小是( )
A. B. C. D.
4.已知平面与两条直线,,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要
5.两条异面直线在同一个平面上的射影不可能是( )
A.两条平行直线 B.两条相交的直线
C. 一条直线与直线外一个点 D. 一条直线
6.直线被圆截得的弦长为4,则的最小值是( )
A. 3 B. C. 2 D.
7.一个结晶体的形状是平行六面体,以顶点为端点的三条棱长均是1,且它们彼此的夹角都是,则对角线的长度是( )
A. B.2 C. D.
8.已知分别是双曲线的左、右焦点,若双曲线右支上存在点,使,且线段的中点在轴上,则双曲线的离心率是( )
A. B. C. D.
9.已知直线与圆相切,则满足条件的直线有( )条
A. 1 B.2 C. 3 D.4
10.如图,正方体的棱长为1,分别为线段上两个动点且,则下列结论中正确的是( )
A.存在某个位置,使
B.存在某个位置,使平面
C.三棱锥的体积为定值
D.的面积与的面积相等
二、填空题(本大题共7小题,其中11-14题每空3分,15-17题每空4分,共36分,将答案填在答题纸上)
11.双曲线的焦距是 ;渐近线方程是 .
12.某三棱锥的三视图如图所示,则该三棱锥的体积为 ;最长边的大小是 .
13.长方体中,,,则异面直线与所成角的大小是 ;与平面所成角的大小是 .
14.点是抛物线上任意一点,则点到直线距离的最小值是 ;距离最小时点的坐标是 .
15.已知向量,,,若是共面向量,则 .
16.矩形与所在平面相互垂直,,现将绕着直线旋转一周,则在旋转过程中,直线与所成角的取值范围是 .
17. 若椭圆与双曲线在第一象限内有交点,且双曲线左、右焦点分别是,,点是椭圆上任意一点,则面积的最大值是 .
三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)
18. 已知直线与圆相交于两个点.
(1)求圆的圆心与半径;
(2)若,求实数的值.
19. 如图,三棱柱中,,,平面
,分别是的中点.
(1)求证:;
(2)求平面与平面所成锐二面角的余弦值.
20.平面上的动点到定点的距离与到直线的距离相等.
(1)求点的轨迹方程;
(2)过点作直线与点的轨迹交于两个不同的点,若,求直线的方程.
21. 如图,在三棱锥中,平面平面,,,,,是重心,是边上点,且.
(1)当时,求证:平面;
(2)若与平面所成角的正弦值为时,求的值.
22.如图,已知椭圆:的离心率为,是椭圆上一点。
(1)求椭圆的方程;
(2)若过点作圆:的切线分别交椭圆于两点,试问直线的斜率是否为定值?若是,求出这定值;若不是,说明理由.
2017-2018学年第一学期期末杭州地区(含周边)重点中学
高二年级数学学科参考答案
考试学校:余杭高级中学 严州中学 余杭高中 萧山中学 等
一、选择题(共10小题,每小题4分,共40分)
题号
1
2
3
4
5
6
7
8
9
10
答案
A
B
C
C
D
C
D
B
C
B
二、填空题(共7小题,多空每题6分,单空每题4分,共36分)
11.4, 12. 13. 14. (2,1)
15.-2, 16. 17.
三、解答题:(本大题共5小题,共74分,本参考答案只提供一种,其它答案请酌情给分.)
18. 解:
(1)圆C的圆心为(1,0),半径,
(2)令C到直线的距离为d,
则
解得:
19. 解:
(1)由题知可以B为原点,分别以BC,BA,BB1为x,y,z轴建系如图所示
则有A(0,2,0),B(0,0,0),C(2,0,0),E(0,0,1),F(1,1,2)
故有:
由:知:
(2)假设平面AEF的法向量为
由
不妨假设
又平面ABC的法向量
即所成锐二面角的余弦值为
20. 解:
(1)由抛物线定义知,点P在以F为焦点,为准线的抛物线上,其轨迹方程为:
(2)AB的斜率显然存在且不为0,
故可设AB的方程:,
由 得 (1)
由 (2)
由(1)(2)得
故所求直线的方程是,即
21. 解:
(1)
又
取AB边中点M,则M、G、C三点共线
且有
(2)中:由余弦定理知
所以
故由题意可以A为原点, AC为y轴,
平面ABC为xoy平面建系如图所示
则
假设
假设平面ABE的法向量为
由
不妨假设
化简得:
由
所求
22. 解;
(1)
解得:
(2)由题意:切线PA,PB斜率相反,且不为0,令PA的斜率为K,则PB的斜率为-K。
PA的方程:
假设 ,
则有
同理:
所以AB的斜率即AB的斜率为定值.