安徽芜湖市2019年中考数学一模试题(有解析)
加入VIP免费下载

本文件来自资料包: 《安徽芜湖市2019年中考数学一模试题(有解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2019年安徽省芜湖市中考数学一模试卷 一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)‎ ‎1.已知5x=6y(y≠0),那么下列比例式中正确的是(  )‎ A. B. C. D.‎ ‎2.若如图所示的两个四边形相似,则∠α的度数是(  )‎ A.75° B.60° C.87° D.120°‎ ‎3.若△ABC∽△DEF,相似比为3:2,则对应高的比为(  )‎ A.3:2 B.3:5 C.9:4 D.4:9‎ ‎4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为(  )‎ A.8 B.12 C.14 D.16‎ ‎5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为(  )‎ A.56° B.62° C.68° D.78°‎ ‎6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为(  )‎ A.1秒 B.2秒 C.4秒 D.20秒 ‎7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是(  )‎ 23‎ A. B. C. D.‎ ‎8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=(  )‎ A.2:1 B.:1 C.3: D.3:2‎ ‎9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )‎ A.AC的长 B.AD的长 C.BC的长 D.CD的长 ‎10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是(  )‎ A. B. ‎ C. D.‎ 二、填空题(本大题共4小题,每小题5分,满分20分.)‎ ‎11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为   .‎ ‎12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD 23‎ 于点E,则图中阴影部分的面积是   (结果保留π).‎ ‎13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为   .‎ ‎14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=   .‎ 三、(本大题共2小题,每小题8分,满分16分.)‎ ‎15.解方程:x(x+2)=0.‎ ‎16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:‎ ‎(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;‎ ‎(2)直接写出点A1的坐标,点A2的坐标.‎ 23‎ 四、(本大题共2小题,每小题8分,满分16分.)‎ ‎17.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.‎ ‎18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?‎ 五、(本大题共2小题,每小题10分,满分20分.)‎ ‎19.如图,⊙O中弦AB与CD交于M点.‎ ‎(1)求证:DM•MC=BM•MA;‎ ‎(2)若∠D=60°,⊙O的半径为2,求弦AC的长.‎ ‎20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B两点(点A在点B的左侧).‎ ‎(1)求m的取值范围;‎ ‎(2)当m取最大整数时,求△ABC的面积.‎ 六、(本题满分12分)‎ ‎21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y ‎(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;‎ ‎(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=‎ 23‎ 的图象上的频率;‎ ‎(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.‎ 七、(本题满分12分)‎ ‎22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点 C,PA⊥y轴于点D,AB分别与 x轴,y轴相交于点F和E.已知点 B的坐标为(1,3).‎ ‎(1)填空:k=   ;‎ ‎(2)证明:CD∥AB;‎ ‎(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.‎ 八、(本题满分14分)‎ ‎23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A和点C作直线BP的垂线,垂足为点E和点F.‎ ‎(1)证明:△ABE∽△BCF;‎ ‎(2)若=,求的值;‎ ‎(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.‎ 23‎ ‎2019年安徽省芜湖市中考数学一模试卷 参考答案与试题解析 一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)‎ ‎1.已知5x=6y(y≠0),那么下列比例式中正确的是(  )‎ A. B. C. D.‎ ‎【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.‎ ‎【解答】解:A、=,则5y=6x,故此选项错误;‎ B、=,则5x=6y,故此选项正确;‎ C、=,则5y=6x,故此选项错误;‎ D、=,则xy=30,故此选项错误;‎ 故选:B.‎ ‎【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.‎ ‎2.若如图所示的两个四边形相似,则∠α的度数是(  )‎ A.75° B.60° C.87° D.120°‎ ‎【分析】根据相似多边形对应角的比相等,就可以求解.‎ ‎【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.‎ ‎【点评】主要考查了相似多边形的性质和四边形的内角和是360度的实际运用.‎ ‎3.若△ABC∽△DEF,相似比为3:2,则对应高的比为(  )‎ A.3:2 B.3:5 C.9:4 D.4:9‎ ‎【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.‎ ‎【解答】解:∵△ABC∽△DEF,相似比为3:2,‎ ‎∴对应高的比为:3:2.‎ 23‎ 故选:A.‎ ‎【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.‎ ‎4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为(  )‎ A.8 B.12 C.14 D.16‎ ‎【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.‎ ‎【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,‎ ‎∴DE∥BC,DE=BC,‎ ‎∴△ADE∽△ABC,‎ ‎∵=,‎ ‎∴=,‎ ‎∵△ADE的面积为4,‎ ‎∴△ABC的面积为:16,‎ 故选:D.‎ ‎【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.‎ ‎5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为(  )‎ A.56° B.62° C.68° D.78°‎ 23‎ ‎【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.‎ ‎【解答】解:∵点I是△ABC的内心,‎ ‎∴∠BAC=2∠IAC、∠ACB=2∠ICA,‎ ‎∵∠AIC=124°,‎ ‎∴∠B=180°﹣(∠BAC+∠ACB)‎ ‎=180°﹣2(∠IAC+∠ICA)‎ ‎=180°﹣2(180°﹣∠AIC)‎ ‎=68°,‎ 又四边形ABCD内接于⊙O,‎ ‎∴∠CDE=∠B=68°,‎ 故选:C.‎ ‎【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.‎ ‎6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为(  )‎ A.1秒 B.2秒 C.4秒 D.20秒 ‎【分析】已知函数式为二次函数解析式,最高点即为抛物线顶点,求达到最高点所用时间,即求顶点的横坐标.‎ ‎【解答】解:∵h=20t﹣5t2=﹣5t2+20t中,‎ 又∵﹣5<0,‎ ‎∴抛物线开口向下,有最高点,‎ 此时,t=﹣=2.‎ 故选:B.‎ ‎【点评】本题考查的是二次函数在实际生活中的应用,比较简单.‎ ‎7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是(  )‎ A. B. C. D.‎ 23‎ ‎【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.‎ ‎【解答】解:列表如下:‎ 共有6种等可能的结果,其中小亮恰好站在中间的占2种,‎ 所以小亮恰好站在中间的概率为=,‎ 故选:C.‎ ‎【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.‎ ‎8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=(  )‎ A.2:1 B.:1 C.3: D.3:2‎ ‎【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.‎ ‎【解答】解:∵矩形纸片对折,折痕为EF,‎ ‎∴AF=AB=a,‎ ‎∵矩形AFED与矩形ABCD相似,‎ ‎∴=,即=,‎ 23‎ ‎∴()2=2,‎ ‎∴=.‎ 故选:B.‎ ‎【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.‎ ‎9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )‎ A.AC的长 B.AD的长 C.BC的长 D.CD的长 ‎【分析】表示出AD的长,利用勾股定理求出即可.‎ ‎【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,‎ 设AD=x,根据勾股定理得:(x+)2=b2+()2,‎ 整理得:x2+ax=b2,‎ 则该方程的一个正根是AD的长,‎ 故选:B.‎ ‎【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.‎ ‎10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是(  )‎ 23‎ A. B. ‎ C. D.‎ ‎【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB=2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.‎ ‎【解答】解:作AH⊥BC于H,‎ ‎∵AB=AC=4cm,‎ ‎∴BH=CH,‎ ‎∵∠B=30°,‎ ‎∴AH=AB=2,BH=AH=2,‎ ‎∴BC=2BH=4,‎ ‎∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,‎ ‎∴点P从B点运动到C需4s,Q点运动到C需8s,‎ 当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,‎ 在Rt△BDQ中,DQ=BQ=x,‎ ‎∴y=•x•x=x2,‎ 当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4‎ 在Rt△BDQ中,DQ=CQ=(8﹣x),‎ 23‎ ‎∴y=•(8﹣x)•4=﹣x+8,‎ 综上所述,y=.‎ 故选:D.‎ ‎【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.‎ 二、填空题(本大题共4小题,每小题5分,满分20分.)‎ ‎11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为 y=(x+1)2 .‎ ‎【分析】先确定抛物线y=x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.‎ ‎【解答】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(﹣1,0),所以新抛物线的解析式为y=(x+1)2.‎ 故答案为y=(x+1)2.‎ ‎【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.‎ ‎12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是 8﹣2π (结果保留π).‎ 23‎ ‎【分析】根据S阴=S△ABD﹣S扇形BAE计算即可;‎ ‎【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,‎ 故答案为8﹣2π.‎ ‎【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.‎ ‎13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为 4 .‎ ‎【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.‎ ‎【解答】解:设点A的坐标为(﹣a,0),‎ ‎∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,‎ ‎∴点C(a,),‎ ‎∴点B的坐标为(0,),‎ ‎∴=1,‎ 解得,k=4,‎ 故答案为:4.‎ ‎【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.‎ ‎14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB 23‎ 边上一动点,若△PAD与△PBC相似,则AP= 或2或6 .‎ ‎【分析】由AD∥BC,∠ABC=90°,易得∠PAD=∠PBC=90°,又由AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,然后分别从△APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.‎ ‎【解答】解:∵AB⊥BC,‎ ‎∴∠B=90°.‎ ‎∵AD∥BC,‎ ‎∴∠A=180°﹣∠B=90°,‎ ‎∴∠PAD=∠PBC=90°.‎ AB=8,AD=3,BC=4,‎ 设AP的长为x,则BP长为8﹣x.‎ 若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:‎ ‎①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,‎ 解得x=;‎ ‎②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),‎ 解得x=2或x=6.‎ 所以AP=或AP=2或AP=6.‎ 故答案是:或2或6.‎ ‎【点评】此题考查了相似三角形的性质.注意利用分类讨论思想求解是关键.‎ 三、(本大题共2小题,每小题8分,满分16分.)‎ ‎15.解方程:x(x+2)=0.‎ ‎【分析】原方程转化为x=0或x+2=0,然后解一次方程即可.‎ ‎【解答】解:∵x=0或x+2=0,‎ ‎∴x1=0,x2=﹣2.‎ ‎【点评】本题考查了解一元二次方程﹣‎ 23‎ 因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.‎ ‎16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:‎ ‎(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;‎ ‎(2)直接写出点A1的坐标,点A2的坐标.‎ ‎【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;‎ ‎(2)利用(1)中所画图形进而得出答案.‎ ‎【解答】解:(1)如图所示:△OA1B1,△OA2B2,即为所求;‎ ‎(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).‎ ‎【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.‎ 四、(本大题共2小题,每小题8分,满分16分.)‎ ‎17.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元,求2014年至2016年该地区投入教育经费的年平均增长率.‎ ‎【分析】一般用增长后的量=增长前的量×‎ 23‎ ‎(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.‎ ‎【解答】解:设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.‎ 则2500(1+x)2=3025,‎ 解得x=0.1=10%,或x=﹣2.1(不合题意舍去).‎ 答:这两年投入教育经费的平均增长率为10%.‎ ‎【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.‎ ‎18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?‎ ‎【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.‎ ‎【解答】解:设宽度AB为x米,‎ ‎∵DE∥BC,‎ ‎∴△ABC∽△ADE,‎ ‎∴=,‎ 又∵BC=24,BD=12,DE=40代入得 ‎∴=,‎ 解得x=18,‎ 答:河的宽度为18米.‎ ‎【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.‎ 五、(本大题共2小题,每小题10分,满分20分.)‎ ‎19.如图,⊙O中弦AB与CD交于M点.‎ 23‎ ‎(1)求证:DM•MC=BM•MA;‎ ‎(2)若∠D=60°,⊙O的半径为2,求弦AC的长.‎ ‎【分析】(1)根据圆周角定理得到∠D=∠B,证明△DMA∽△BMC,根据相似三角形的性质列出比例式,即可证明结论;‎ ‎(2)连接OA,OC,过O作OH⊥AC于H点,根据圆周角定理、垂径定理计算即可.‎ ‎【解答】(1)证明:∵=,‎ ‎∴∠D=∠B,又∵∠DMA=∠BMC,‎ ‎∴△DMA∽△BMC,‎ ‎∴=,‎ ‎∴DM•MC=BM•MA;‎ ‎(2)连接OA,OC,过O作OH⊥AC于H点,‎ ‎∵∠D=60°,‎ ‎∴∠AOC=120°,∠OAH=30°,AH=CH,‎ ‎∵⊙O半径为2,‎ ‎∴AH=‎ ‎∵AC=2AH,‎ ‎∴AC=2.‎ ‎【点评】本题考查的是相似三角形的判定和性质、圆周角定理、垂径定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.‎ 23‎ ‎20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B两点(点A在点B的左侧).‎ ‎(1)求m的取值范围;‎ ‎(2)当m取最大整数时,求△ABC的面积.‎ ‎【分析】(1)根据抛物线与x轴有两个交点,得到△>0,由此求得m的取值范围.‎ ‎(2)利用(1)中m的取值范围确定m=2,然后根据抛物线解析式求得点A、B的坐标,利用三角形的面积公式解答即可.‎ ‎【解答】解:(1)∵抛物线y=x2﹣4x+2m﹣1与x轴有两个交点,令y=0.‎ ‎∴x2﹣4x+2m﹣1=0.‎ ‎∵与x轴有两个交点,‎ ‎∴方程有两个不等的实数根.‎ ‎∴△>0.即△=(﹣4)2﹣4•(2m﹣1)>0,‎ ‎∴m<2.5.‎ ‎(2)∵m<2.5,且m取最大整数,‎ ‎∴m=2.‎ 当m=2时,抛物线y=x2﹣4x+2m﹣1=x2﹣4x+3=(x﹣2)2﹣1.‎ ‎∴C坐标为(2,﹣1).‎ 令y=0,得x2﹣4x+3=0,解得x1=1,x2=3.‎ ‎∴抛物线与x轴两个交点的坐标为A(1,0),B(3,0),‎ ‎∴△ABC的面积为=1.‎ ‎【点评】考查了抛物线与x轴的交点坐标,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点,解题时,注意二次函数与一元二次方程间的转化关系.‎ 六、(本题满分12分)‎ ‎21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y ‎(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;‎ ‎(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=‎ 23‎ 的图象上的频率;‎ ‎(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.‎ ‎【分析】(1)列表得出所有等可能的情况数即可;‎ ‎(2)找出点(x,y)落在反比例函数y=的图象上的情况数,即可求出所求的概率;‎ ‎(3)找出所确定的数x,y满足y的情况数,即可求出所求的概率.‎ ‎【解答】解:(1)列表如下:‎ ‎ ‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎1‎ ‎(1,1)‎ ‎(2,1)‎ ‎(3,1)‎ ‎(4,1)‎ ‎2‎ ‎(1,2)‎ ‎(2,2)‎ ‎(3,2)‎ ‎(4,2)‎ ‎3‎ ‎(1,3)‎ ‎(2,3)‎ ‎(3,3)‎ ‎(4,3)‎ ‎4‎ ‎(1,4)‎ ‎(2,4)‎ ‎(3,4)‎ ‎(4,4)‎ 所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);‎ ‎(2)其中点(x,y)落在反比例函数y=的图象上的情况有:(2,3);(3,2)共2种,‎ 则P(点(x,y)落在反比例函数y=的图象上)==;‎ ‎(3)所确定的数x,y满足y的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,‎ 则P(所确定的数x,y满足y)==.‎ ‎【点评】此题考查了列表法与树状图法,以及反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.‎ 七、(本题满分12分)‎ ‎22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点 C,PA⊥y轴于点D,AB分别与 x轴,y轴相交于点F和E.已知点 B的坐标为(1,3).‎ 23‎ ‎(1)填空:k= 3 ;‎ ‎(2)证明:CD∥AB;‎ ‎(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.‎ ‎【分析】(1)由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;‎ ‎(2)设A点坐标为(a,),则D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合∠P=∠P可得出△PDC∽△PAB,由相似三角形的性质可得出∠CDP=∠A,再利用“同位角相等,两直线平行”可证出CD∥AB;‎ ‎(3)由四边形ABCD的面积和△PCD的面积相等可得出S△PAB=2S△PCD,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.‎ ‎【解答】(1)解:∵B点(1,3)在反比例函数y=的图象,‎ ‎∴k=1×3=3.‎ 故答案为:3.‎ ‎(2)证明:∵反比例函数解析式为,‎ ‎∴设A点坐标为(a,).‎ ‎∵PB⊥x轴于点C,PA⊥y轴于点 D,‎ ‎∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),‎ ‎∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,‎ ‎∴,,‎ ‎∴.‎ 23‎ 又∵∠P=∠P,‎ ‎∴△PDC∽△PAB,‎ ‎∴∠CDP=∠A,‎ ‎∴CD∥AB.‎ ‎(3)解:∵四边形ABCD的面积和△PCD的面积相等,‎ ‎∴S△PAB=2S△PCD,‎ ‎∴×(3﹣)×(1﹣a)=2××1×(﹣),‎ 整理得:(a﹣1)2=2,‎ 解得:a1=1﹣,a2=1+(舍去),‎ ‎∴P点坐标为(1,﹣3﹣3).‎ ‎【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)利用相似三角形的判定定理找出△PDC∽△PAB;(3)由三角形的面积公式,找出关于a的方程.‎ 八、(本题满分14分)‎ ‎23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A和点C作直线BP的垂线,垂足为点E和点F.‎ ‎(1)证明:△ABE∽△BCF;‎ ‎(2)若=,求的值;‎ ‎(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.‎ 23‎ ‎【分析】(1)由余角的性质可得∠ABE=∠BCF,即可证△ABE∽△BCF;‎ ‎(2)由相似三角形的性质可得==,由等腰三角形的性质可得BP=2BE,即可求的值;‎ ‎(3)由题意可证△DPH∽△CPB,可得==,可求AE=,由等腰三角形的性质可得AE平分∠BAP,可证∠EAG=∠BAH=45°,可得△AEG是等腰直角三角形,即可求AG的长.‎ ‎【解答】证明:(1)∵AB⊥BC,‎ ‎∴∠ABE+∠FBC=90°‎ 又∵CF⊥BF,‎ ‎∴∠BCF+∠FBC=90°‎ ‎∴∠ABE=∠BCF 又∵∠AEB=∠BFC=90°,‎ ‎∴△ABE∽△BCF ‎(2)∵△ABE∽△BCF,‎ ‎∴==‎ 又∵AP=AB,AE⊥BF,‎ ‎∴BP=2BE ‎∴==‎ ‎(3)如图,延长AD与BG的延长线交于H点 23‎ ‎∵AD∥BC,‎ ‎∴△DPH∽△CPB ‎∴==‎ ‎∵AB=BC,由(1)可知△ABE≌△BCF ‎∴CF=BE=EP=1,‎ ‎∴BP=2,‎ 代入上式可得HP=,HE=1+=‎ ‎∵△ABE∽△HAE,‎ ‎∴=,=,‎ ‎∴AE=‎ ‎∵AP=AB,AE⊥BF,‎ ‎∴AE平分∠BAP 又∵AG平分∠DAP,‎ ‎∴∠EAG=∠BAH=45°,‎ ‎∴△AEG是等腰直角三角形.‎ ‎∴AG=AE=3‎ ‎【点评】本题是相似综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.‎ 23‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料