1.(2017·江苏卷)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.
2.(2016·全国卷甲)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|=,求l的斜率.
解析:(1)由x=ρcosθ,y=ρsinθ可得圆C的极坐标方程为ρ2+12ρcosθ+11=0.
(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).
设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0,
于是ρ1+ρ2=-12cosα,ρ1ρ2=11.
|AB|=|ρ1-ρ2|=
=.
由|AB|=得cos2α=,tan α=±.
所以l的斜率为或-.
3.(2017·全国卷Ⅱ)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为(t为参数),曲线C1的方程为ρ(ρ-4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.
(1)求点Q的轨迹C2的直角坐标方程;
(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.
解析:(1)根据题意,得
曲线C1的直角坐标方程为x2+y2-4y=12,
设点P(x′,y′),Q(x,y),
根据中点坐标公式,得
代入x2+y2-4y=12,
得点Q的轨迹C2的直角坐标方程为(x-3)2+(y-1)2=4,
(2)直线l的直角坐标方程为y=ax,根据题意,得圆心(3,1)到直线的距离d≤=1,即≤1,解得0≤a≤.
∴实数a的取值范围为.
4.(2017·全国卷Ⅲ)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sin θ)-=0,M为l3与C的交点,求M的极径.
解析:(1)消去参数t得l1的普通方程l1:y=k(x-2);
消去参数m得l2的普通方程l2:y=(x+2).
设P(x,y),由题设得
消去k得x2-y2=4(y≠0),
所以C的普通方程为x2-y2=4(y≠0).
5.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是(t为参数),l与C交于A、B两点,|AB|=,求l的斜率.
解 (1)由x=ρcosθ,y=ρsinθ可得圆C的极坐标方程ρ2+12ρcosθ+11=0.
(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).
设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcosα+11=0.
于是ρ1+ρ2=-12cosα,ρ1ρ2=11.
|AB|=|ρ1-ρ2|=
=.
由|AB|=,得cos2α=,tanα=±.
所以l的斜率为或-.
6.已知圆C的极坐标方程为ρ2+2ρ·sin-4=0,求圆C的半径.
解 以极坐标系的极点为平面直角坐标系的原点O,以极轴为x轴的正半轴,建立直角坐标系xOy.
圆C的极坐标方程为
ρ2+2ρ-4=0,
化简,得ρ2+2ρsinθ-2ρcosθ-4=0.
则圆C的直角坐标方程为x2+y2-2x+2y-4=0,
即(x-1)2+(y+1)2=6,
所以圆C的半径为.
7.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,求AB的长.
8.在直角坐标系中圆C的参数方程为 (α为参数),若以原点O为极点,以x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程.
解 由参数方程消去α得圆C的方程为x2+(y-2)2=4,将x=ρcosθ,y=ρsinθ,
代入得(ρcosθ)2+(ρsinθ-2)2=4,整理得ρ=4sinθ.
9.已知曲线C:(θ为参数),直线l:ρ(cosθ-sinθ)=12.
(1)将直线l的极坐标方程和曲线C的参数方程分别化为直角坐标方程和普通方程;
(2)设点P在曲线C上,求P点到直线l的距离的最小值.
解 (1)依题意可得直线l的直角坐标方程为x-y-12=0,曲线C的普通方程为+=1.
(2)设P(3cosθ,sinθ),
则点P到直线l的距离
d==,
故当cos(θ+)=1时,dmin=3.
易错起源1、极坐标与直角坐标的互化
例1、在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,求a的值.
【变式探究】在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+)=3和ρsin2θ=8cosθ,直线l与曲线C交于点A、B,求线段AB的长.
解 ∵ρcos(θ+)=ρcosθcos-ρsinθsin
=ρcosθ-ρsinθ=3,
∴直线l对应的直角坐标方程为x-y=6.
又∵ρsin2θ=8cosθ,∴ρ2sin2θ=8ρcosθ.
∴曲线C对应的直角坐标方程是y2=8x.
解方程组,
得或,
所以A(2,-4),B(18,12),
所以AB==16.
即线段AB的长为16.
【名师点睛】
(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.
(2)在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性.
【锦囊妙计,战胜自我】
直角坐标与极坐标的互化
把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,
设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ),则,.
易错起源2、参数方程与普通方程的互化
例2、在平面直角坐标系xOy中,圆C的参数方程为(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为ρsin=m(m∈R).
(1)求圆C的普通方程及直线l的直角坐标方程;
(2)设圆心C到直线l的距离等于2,求m的值.
解 (1)消去参数t,得到圆C的普通方程为
(x-1)2+(y+2)2=9.
由ρsin=m,
得ρsinθ-ρcosθ-m=0.
所以直线l的直角坐标方程为x-y+m=0.
(2)依题意,圆心C到直线l的距离等于2,即=2,
解得m=-3±2.
【变式探究】已知直线l的参数方程为(t为参数),P是椭圆+y2=1上的任意一点,求点P到直线l的距离的最大值.
【名师点睛】
(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.
(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x、y有范围限制,要标出x、y的取值范围.
【锦囊妙计,战胜自我】
1.直线的参数方程
过定点M(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).
2.圆的参数方程
圆心在点M(x0,y0),半径为r的圆的参数方程为(θ为参数,0≤θ≤2π).
3.圆锥曲线的参数方程
(1)椭圆+=1的参数方程为(θ为参数).
(2)抛物线y2=2px(p>0)的参数方程为(t为参数).
易错起源3、极坐标、参数方程的综合应用
例3、在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2cosθ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
解 (1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.
联立
解得或
所以C2与C3交点的直角坐标为(0,0)和.
(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.
因此A的极坐标为(2sinα,α),B的极坐标为(2cosα,α).
所以|AB|=|2sinα-2cosα|=4.
当α=时,|AB|取得最大值,最大值为4.
【变式探究】在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.
(1)写出⊙C的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.
解 (1)由ρ=2sinθ,
得ρ2=2ρsinθ,从而有x2+y2=2y,
所以x2+(y-)2=3.
(2)设P,又C(0,),
则|PC|==,
故当t=0时,|PC|取得最小值,
此时,P点的直角坐标为(3,0).
【名师点睛】
(1)利用参数方程解决问题,要理解参数的几何意义.
(2)解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于对方程所表示的曲线的认识,从而达到化陌生为熟悉的目的,这是转化与化归思想的应用.
【锦囊妙计,战胜自我】
解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.