河北石家庄2018届高三数学质量检测(二)文科带答案
加入VIP免费下载

本文件来自资料包: 《河北石家庄2018届高三数学质量检测(二)文科带答案》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
www.ks5u.com 河北省石家庄2018届高三教学质量检测(二)‎ 文科数学 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.设集合,,则 ( )‎ A. B. ‎ C. D. ‎ ‎2.已知复数满足,若的虚部为,则复数在复平面内对应的点在( )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎3.在等比数列中,2,,则( )‎ A.28 B.32 C.64 D.14‎ ‎4.设且,则“”是“”的( )‎ A.必要不充分条件 B.充要条件 C.既不充分也不必要条件 D.充分不必要条件 ‎5.我国魏晋期间的伟大的数学家刘徽,是最早提出用逻辑推理的方式来论证数学命题的人,他创立了“割圆术”,得到了著名的“徽率”,即圆周率精确到小数点后两位的近似值,如图就是利用“割圆术”的思想设计的一个程序框图,则输出的值为( )(参考数据:,,)‎ A.24 B.36 C.48 D.12‎ ‎6.若两个非零向量,满足,则向量与的夹角为( )‎ A. B. C. D.‎ ‎7.已知定义在上的奇函数满足,且当时,,则( )‎ A. B.18 C. D.2 ‎ ‎8.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )‎ A. B. C.8 D.‎ ‎9.某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差 ‎①A班数学兴趣小组的平均成绩高于B班的平均成绩 ‎②B班数学兴趣小组的平均成绩高于A班的平均成绩 ‎③A班数学兴趣小组成绩的标准差大于B班成绩的标准差 ‎④B班数学兴趣小组成绩的标准差小于A班成绩的标准差 其中正确结论的编号为( )‎ A.①④ B.②③ C.②④ D.①③‎ ‎10.已知函数的部分图象如图所示,已知点,,若将它的图象向右平移个单位长度,得到函数的图象,则函数的图象的一条对称轴方程为( )‎ A. B. C. D.‎ ‎11.已知,是双曲线的两个焦点,点是双曲线的右顶点,是双曲线的渐近线上一点,满足,如果以点为焦点的抛物线经过点,则此双曲线的离心率为( )‎ A. B.2 C. D. ‎ ‎12.已知函数图象上三个不同点的横坐标成公差为1的等差数列,则面积的最大值为 ( )‎ A. B. ‎ C. D. ‎ 二、填空题(每题5分,满分20分,将答案填在答题纸上)‎ ‎13.口袋中有形状和大小完全相同的五个球,编号分别为1,2,3,4,5,若从中一次随机摸出两个球,则摸出的两个球的编号之和大于6的概率为_____________.‎ ‎14.设变量满足约束条件,则的最大值为_____________.‎ ‎15.已知数列的前项和,如果存在正整数,使得成立,则实数的取值范围是_____________.‎ ‎16.正四面体的棱长为6,其中平面,分别是线段的中点,以为轴旋转正四面体,且正四面体始终在平面的同侧,则线段在平面上的射影长的取值范围是_____________.‎ 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) ‎ ‎17.已知的内角的对边长分别为,且.‎ ‎(1)求角的大小;‎ ‎(2)设为边上一点,且,,求.‎ ‎18.随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据:‎ 月份 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ 促销费用 ‎2‎ ‎3‎ ‎6‎ ‎10‎ ‎13‎ ‎21‎ ‎15‎ ‎18‎ 产品销量 ‎1‎ ‎1‎ ‎2‎ ‎3‎ ‎5‎ ‎4‎ ‎(1)根据数据绘制的散点图能够看出可用线性回归模型拟合与的关系,请用相关系数加 以说明;(系数精确到);‎ ‎(2)建立关于的回归方程(系数精确到);如果该公司计划在9月份实现产品销量超6万件,预测至少需要投入促销费用多少万元(结果精确到).‎ 参考数据:,,,,,其中,分别为第个月的促销费用和产品销量,.‎ 参考公式:‎ ‎(1)样本的相关系数.‎ ‎(2)对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计分别为,.‎ ‎19.如图,三棱柱中,侧面是边长为2且的菱形,.‎ ‎(1)证明:平面平面.‎ ‎(2)若,,求点到平面的距离..‎ ‎20.已知圆的圆心在抛物线上,圆过原点且与抛物线的准线相切.‎ ‎(1)求该抛物线的方程;‎ ‎(2)过抛物线焦点的直线交抛物线于两点,分别在点处作抛物线的两条切线交于点,求三角形面积的最小值及此时直线的方程.‎ ‎21.已知函数.其中 ‎(1)当时,求函数的单调区间;‎ ‎(2)若对于任意,都有恒成立,求的取值范围.‎ ‎22.在直角坐标系中,曲线的参数方程为(其中为参数),曲线.以原点为极点,轴的正半轴为极轴建立极坐标系.‎ ‎(1)求曲线、的极坐标方程;‎ ‎(2)射线与曲线、分别交于点(且均异于原点)当时,求的最小值.‎ ‎23.已知函数.‎ ‎(1)当时,求的解集;‎ ‎(2)若,当,且时,,求实数的取值范围.‎ 石家庄2018届高三教学质量检测(二)‎ 文科数学答案 一、 选择题 ‎1-5ADBAC 6-10DCAAD 11-12CD 二、填空题 ‎13. 14.3 1516.‎ 三、解答题(解答题仅提供一种解答,其他解答请参照此评分标准酌情给分)‎ ‎17、解:(1)在△ABC中 ‎(2)由BD=5,DC=3,,得 ‎18、‎ 答案:(1)由题可知, ‎ 将数据代入得 因为与的相关系数近似为0.995,说明与 的线性相关性很强,从而可以用回归模型拟合与的的关系.(需要突出“很强”,“一般”或“较弱”不给分)‎ ‎(2)将数据代入得 所以关于的回归方程 由题解得,即至少需要投入促销费用万元. ‎ ‎(说明:如果 ,,导致结果不一致,第二问整体得分扣1分)‎ ‎19.证明:(1)连接交于,连接 侧面为菱形,‎ ‎,为的中点, ‎ 又,平面,‎ 平面平面平面.‎ ‎(2)由,,,平面,平面 ‎,又,,平面 ‎ 菱形的边长为2且,‎ 又,,‎ , ‎ 设点B到平面的距离为 由得 ‎ 点B到平面的距离为. ‎ ‎20‎ 解:(1)由已知可得圆心,半径,焦点,准线 因为圆C与抛物线F的准线相切,所以,‎ 且圆C过焦点F,‎ 又因为圆C过原点,所以圆心C必在线段OF的垂直平分线上,即 所以,即,抛物线F的方程为 ‎(2)易得焦点,直线L的斜率必存在,设为k,即直线方程为 设 得,,‎ 对求导得,即 直线AP的方程为,即,‎ 同理直线BP方程为 设,联立AP与BP直线方程解得,即 所以,点P到直线AB的距离 所以三角形PAB面积,当仅当时取等号 综上:三角形PAB面积最小值为4,此时直线L的方程为。‎ ‎21解:(1),令其为,则所以可得即单调递增, ‎ 而,则在区间上,,函数单调递减;在区间上,函数单调递增 ‎ ‎(2),另,可知,‎ ‎,令, ‎ ① 当时,结合对应二次函数的图像可知,,即,所以函数单调递减,,时,,时,,‎ 可知此时满足条件. ‎ 当时,结合对应二次函数的图像可知,可知,单调递增,,时,,时,,,可知此时不成立. ‎ ② 当时,研究函数,可知,对称轴,‎ 那么在区间大于0,即在区间大于0,在区间单调递增,,可知此时,所以不满足条件.‎ 综上所述:. ‎ ‎22.‎ 解:(1)曲线的普通方程为,的极坐标方程为 ‎ 的极坐标方程为………5分 ‎(2)联立与的极坐标方程得,‎ 联立与的极坐标方程得,‎ 则= =‎ ‎=‎ ‎(当且仅当时取等号).‎ 所以的最小值为 ‎ ‎23.‎ 解:当时,‎ 当时,无解;‎ 当时,的解为;‎ 当时,无解;‎ 综上所述,的解集为 ‎ 当时,‎ 所以可化为 又的最大值必为、之一 即即 又所以 所以取值范围为 ‎ ‎

资料: 29.3万

进入主页

人气:

10000+的老师在这里下载备课资料